Supplementary Roads and Transport Assessment

Surat Gas Project SREIS

CEB06413

Prepared for Arrow Energy Pty Ltd via Coffey Environments Pty Ltd

12 June 2013

Document Information

Prepared for Arrow Energy Pty Ltd via Coffey Environments Pty Ltd

Project Name Surat Gas Project SREIS

File Reference 6413 SGP SREIS RIA DRAFT V3 - 2013 06 03.docx

Job Reference CEB06413

Date 12 June 2013

Contact Information

Cardno (Qld) Pty Ltd

ABN 57 051 074 992

Level 11 Green Square North Tower 515 St Paul's Terrace Locked Bag 4006 Fortitude Valley Qld 4006

Telephone: 07 3369 9822 Facsimile: 07 3369 9722 International: +61 7 3369 9822

transportqld@cardno.com.au

www.cardno.com.au

Document Control

Version Date	Author	Author Initials	Reviewer	Reviewer Initials
V1	Damien Scutt Jessica Peters		Jeffrey Baczynski	
V2	Damien Scutt Jessica Peters		Shane Healey	
V3	Damien Scutt Jessica Peters		Jeffrey Baczynski Shane Healey	
FINAL	Damien Scutt Jessica Peters	DGS/JJP	Jeffrey Baczynski Shane Healey	JDB/SRH

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

[©] Cardno 2013. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

Executive Summary

Arrow Energy Pty Ltd (Arrow) is proposing an expansion of its coal seam gas operations in the Surat Basin through the Surat Gas Project. As part of the Environmental Impact Statement (EIS) preparation, Cardno (Qld) Pty Ltd (Cardno) was commissioned to undertake a Road Impact Assessment (RIA) to assess the significance of the potential traffic impacts associated with the project. Following submission of the EIS, Arrow has now reviewed and in turn revised project planning which requires that additional assessment be completed to validate the previously reported road impacts. Given this, Cardno has now been commissioned to revise the RIA by undertaking the Supplementary Roads and Transport Assessment to form part of the Supplementary Report to the Environmental Impact Statement (SREIS). The Supplementary Roads and Transport Assessment is referred to hereafter as the SREIS RIA.

Consistent with the previous RIA, the purpose of the SREIS RIA has been to establish a representative development scenario to inform a reasonable understanding of the significance of the project's impacts on the road network at all stages of the project. While the outcomes from the RIA are considered strategic given that facility and infrastructure locations, and the roads leading to and from these locations, are yet to be finalised, it provides a high level overview of the expected traffic volumes and impacts.

The SREIS RIA establishes if there are likely to be any road impacts that cannot be effectively managed through either the application of appropriate approval conditions, or through the application of the planned management strategies. The SREIS RIA seeks to confirm if there are likely to be any residual road impacts so significant post implementation of approval conditions and the planned management strategies that they should preclude approval of the project. To provide an additional level of assessment, the Road Impact Assessment includes consideration of case studies for specific areas to demonstrate the application of the management strategies proposed.

Based upon the work previously undertaken as part of the EIS, the SREIS RIA expands upon this by applying both an environmental values assessment approach and a more traditional traffic engineering assessment approach. Both assessment approaches undertaken seek to determine the significance of residual road impacts post implementation of the planned management strategies. The inclusion of both approaches within the EIS RIA provides road authorities greater certainty that the planned management strategies will preserve key road environmental values whilst also meeting or exceeding typical traffic engineering practice requirements.

The SREIS provides an update to the existing traffic conditions that were previously reviewed to include more recent data where available. This involved obtaining data regarding the existing traffic volumes, multi-combination vehicle routes, school bus routes, rail crossings, stock routes, pedestrian, cycle and public transport networks, motorist rest areas and a road safety assessment of historical crash rates. Other projects that will increase traffic demands in the region were also considered to ensure that traffic growth forecasts accommodated these increases.

With regards to the potential traffic generation of the project, the assessed project infrastructure broadly includes:

- > Production wells and gathering infrastructure
- > Central gas processing facilities
- > Field compression facilities
- > Temporary worker accommodation facilities
- > Water treatment facilities co-located with central gas processing facilities.

Based on an understanding of the activities associated with the construction, operation and decommissioning of production facilities, wells and gathering lines, the traffic generating potential was determined including assignment of origins and destinations to inform the modelling process.

Using a strategic modelling process, combined with the estimated traffic generation potential associated with the construction, operation and decommissioning of project facilities and infrastructure, the volume of project traffic on each road link over the project life was estimated. This process identified an average Annual

Average Daily Traffic (AADT) volume and a peak year AADT volume on each link over the project life. This process identified the increase in traffic on the road network as a result of project activities.

Broadly the strategic modelling indicates that the total travel generated by the project in its peak year is likely to be equal to or less than 1.5% of the total travel currently (2011) occurring across TMR's former Darling Downs Region road network. At its peak the project is anticipated to increase the extent of heavy vehicle travel occurring on the district's road network by less than 4.2% of the existing (2011) levels.

The management strategies included in the EIS RIA were reviewed with regards to minimising the significance of project impacts on the assessed road environmental values of safety, efficiency and amenity. Two additional strategies were included based on current best practice which are undertaking a Fit-For-Use road inspection to identify if road assets are appropriate for the proposed project traffic and entering into agreement with Councils to hand roads in no worse a state of repair compared with the condition at the start of construction activities. The management strategies are considered to provide the principles upon which future Road Use Management Plans and infrastructure agreements will be developed in consultation with the relevant road authorities.

To ascertain the effectiveness of the management strategies, both an environmental values approach and a traditional traffic engineering approach were then applied. Consistent with the environmental values approach previously adopted, roads typically defined as Rural Connecting Roads and Rural Access Roads were identified as more susceptible to potential impacts of high significance on efficiency, safety and amenity. Roads defined as Regional Connecting Roads and Highways were identified in having moderate and low significance of impacts respectively on efficiency, safety and amenity. Post implementation of the management strategies, the sensitivity of the various road types to changed traffic conditions is reduced.

Based on the environmental values approach, through the application of management strategies it was determined that the overall significance of the project's road impacts would be reduced from a range of negligible-to-high to a range of negligible-to-moderate. The developed management strategies are therefore considered effective at reducing the significance of the project's impact on the safety, efficiency and amenity of the road network. Hence, the environmental values assessment has identified that there are unlikely to be impacts so significant (high or major) that they cannot be effectively managed through the implementation of the planned management strategies.

Further to the environmental values approach, the SREIS RIA expands upon the work previously undertaken by applying a more traditional traffic engineering assessment approach. To support the traditional traffic engineering assessment approach, case study sites were identified at which it is likely, but not certain, that major project facilities will ultimately be located subject to further constraints analysis. The identification of case study sites allowed the effectiveness of the planned management strategies to be assessed through undertaking Fit-For-Use assessments, intersection assessments and a pavement impact assessment. Applying the planned management strategies to the case study locations confirmed that for these sample sites, the implementation of the strategies would ultimately result in proponent funded road works and contributions which address any significant project impacts. Importantly, the likely proponent funded road works and contributions will meet or exceed typical traffic engineering practice requirements.

The intent of the traditional traffic engineering assessment was not to identify an exhaustive list of the proponent funded works and contributions ultimately required to support the project. Identification of such a list is premature as the specific location and delivery timing of project infrastructure is yet to be finalised. Identification of an exhaustive list will ultimately occur as part of the RIAs prepared post assessment of the EIS to inform the road authority infrastructure agreements. The assessment undertaken confirms that the planned management strategies will ultimately result in any significant project impacts being addressed in accordance with typical traffic engineering practice requirements.

Arrow will prepare revised RIAs for each of the road authority road networks utilised by project traffic following assessment of the EIS. The RIAs will inform the identification of the specific road works and contributions required to support the project. The proponent funded road works and contributions identified through the future RIAs will be included in future infrastructure agreements entered into with the relevant road authorities.

This RIA constitutes a strategic assessment of the significance of the road impacts associated with the Surat Gas Project. Through the environmental values and traffic engineering approaches, it is identified that no high or major residual impacts are foreseen on the safety, efficiency and amenity of the assessed road networks following the application of appropriate approval conditions and planned management strategies.

[This page has been left intentionally blank]

Table of Contents

Exec	cutive	Summary	iii
Abbreviations			xi
Glos	sary		xii
1	Prop	onent and Project Overview	2
	1.1	Proponent Introduction	2
	1.2	Project Overview	2
	1.3	Project Schedule	3
2	Asse	essment Overview	8
	2.1	Objectives of the Road Impact Assessment	8
	2.2	SREIS RIA Context	8
	2.3	SREIS RIA Methodology	9
	2.4	SREIS RIA Assessment Approaches	10
3	Legis	slative Context	12
4	Exist	ting Road Environment Conditions	14
	4.1	Functional Road Hierarchy	14
	4.2	Road Construction Standard	14
	4.3	Traffic Volumes	14
	4.4	Multi-Combination Vehicle Routes	14
	4.5	School Bus Routes	14
	4.6	Rail Crossings	14
	4.7	Stock Routes	15
	4.8	Road Safety	15
	4.9	Motorist Rest Areas	15
	4.10	Pedestrian and Cycle Networks	15
	4.11	Public Transport Networks	15
5	Futu	re Baseline Traffic Volumes	26
	5.1	Historic Traffic Growth	26
	5.2	Cumulative Impacts	26
6	Proje	ect Activities and Traffic Generation	30
	6.1	Project Activities	30
	6.2	Project Traffic Generation	30
7	Strat	egic Traffic Modelling	32
	7.1	Traffic Modelling Methodology	32
	7.2	Forecast Project Traffic Demands	32
	7.3	Comparison to EIS Traffic Demands	37
	7.4	Forecast Pedestrian and Cyclist Volumes	39
8	Litera	ature Review	50
	8.1	Intersection Thresholds	50
	8.2	Sight Distance	53
9	Mana	agement Strategies	54
	9.1	Management Strategies	54
10	Envi	ronmental Values Assessment	60
	10.1	Assessment Approach Overview	60

	10.2	Adopted Magnitude of Impact Thresholds	60
	10.3	Adopted Sensitivity of Environmental Value Thresholds	61
	10.4	Adopted Significance of Impact Thresholds	63
	10.5	Significance of Impacts Pre-Management Strategies	63
	10.6	Significance of Impacts Post-Management Strategies	64
	10.7	Summary of Environmental Values Assessment	64
11	Case	e Study	74
	11.1	Overview	74
	11.2	Case Study Facility Locations	74
	11.3	Case Study Assessments	74
	11.4	Scoping Assessment	74
	11.5 11.6	Fitness for Use Assessment Intersection Assessment	75 77
	11.7	Pavement Assessment	77
40			
12		clusions	84
Refe	ence	es e	86
Tab	les		
Table	5-1	Other Projects in Proximity to Project Study Area	26
Table	6-1	Summary of Traffic Generation Potential of Project Activities	31
Table	7-1	Project Transport Task	33
Table	7-2	Project Transport Task - VKT (EIS vs. SREIS)	37
Table	7-3	Peak Project AADT Comparison (EIS vs. SREIS)	38
Table	8-1	TMR Thresholds for Intersection Performance	50
Table	8-2	RMS Level of Service (LOS) Criteria for Priority Controlled Intersections	51
Table	9-1	Efficiency: Sealed Roads Management Strategies	55
Table	9-2	Efficiency: Unsealed Roads Management Strategies	55
Table	9-3	Safety: Access Roads Management Strategies	56
Table	9-4	Safety: Bridges Management Strategies	57
Table	9-5	Safety: School Bus Routes Management Strategies	57
Table	9-6	Safety: Rail Crossings Management Strategies	58
Table	9-7	Safety: Drive Fatigue Management Strategies	58
Table	9-8	Amenity: Stock Routes Management Strategies	58
Table	10-1	Assessment of Significance of Impacts	60
Table	10-2	Sensitivity Values Pre-Management Strategies Implementation	61
Table	10-3	Sensitivity Values Post-Management Strategies Implementation	62
Table	10-4	Significance of Impacts: Pre-Management Strategies Matrix	63
Table	10-5	Significance of Impacts: Post-Management Strategies Matrix	63
Table	10-6	Roads with Significant Impact: Pre-Management Strategies	63
Table	10-7		64
		Case Study: Preferred Routes	75
		Case Study: Preferred Routes – Planned Management Strategies Approach	76
		Case Study: Preferred Routes – Peak Traffic Demands	76

Table 11-4	Case Study: Road Opgrades – Traditional Traffic Engineering Approach	76
Table 11-5	Case Study: Comparison of Theoretical Road Upgrade Requirements	77
Table 11-6	Case Study: Intersection Assessment – Existing Treatments	78
Table 11-7	Case Study: Intersection Upgrades – Planned Management Strategies Approach	78
Table 11-8	Case Study: Intersection Upgrades – Traditional Traffic Engineering Approach	79
Table 11-9	Case Study: Comparison of Theoretical Intersection Upgrade Requirements	79
Table 11-10	Case Study: Comparison of Theoretical Pavement Rehabilitation Requirements	80
Figures		
Figure 1-1	Locality Map	5
Figure 1-2	Drainage Areas	6
Figure 1-3	Representative Facility Locations	7
Figure 2-1	Context of the SREIS RIA	9
Figure 2-2	GARID Process Flowchart and References	11
Figure 4-1	Functional Road Hierarchy	16
Figure 4-2	Road Construction Standard	17
Figure 4-3	Annual Average Daily Traffic Volumes	18
Figure 4-4	Multi-Combination Vehicle Routes	19
Figure 4-5	School Bus Routes	20
Figure 4-6	Rail Crossings	21
Figure 4-7	Stock Routes	22
Figure 4-8	Historic Crash Locations and Rates (2005 to 2012)	23
Figure 4-9	Motorist Rest Areas	24
Figure 5-1	Traffic Growth – Warrego Highway (Toowoomba – Dalby)	27
Figure 5-2	Traffic Growth – Warrego Highway (Dalby - Miles)	28
Figure 7-1	VKT Across Assessed Road Network by Vehicle Type	33
Figure 7-2	VKT Across Assessed Road Network by Road Authority	34
Figure 7-3	VKT on TMR Roads Across Assessed Road Network by Vehicle Type	35
Figure 7-4	VKT on TMR Roads Across Assessed Road Network as Percentage of 2011 VKT in former Darling Downs Region	36
Figure 7-5	VKT Across Assessed Road Network (EIS vs. SREIS)	37
Figure 7-6	Percentile of Maximum Project AADT on Individual Links (SREIS)	38
Figure 7-7	Percentile of Average Project AADT on Individual Links (SREIS)	39
Figure 7-8	Traffic Model Elements	40
Figure 7-9	Total Transport Task (Full Project Life)	41
Figure 7-10	Average Project Life AADT	42
Figure 7-11	Average Project Life AADT (Northern)	43
Figure 7-12	Average Project Life AADT (Central)	44
Figure 7-13	Average Project Life AADT (Southern)	45
Figure 7-14	Maximum Project AADT (Peak Year for Individual Links)	46
Figure 7-15	Maximum Project AADT (Peak Year for Individual Links) (Northern)	47
Figure 7-16	Maximum Project AADT (Peak Year for Individual Links) (Central)	48

Figure 7-17	Maximum Project AADT (Peak Year for Individual Links) (Southern)	49
Figure 8-1	Intersection Turn Treatments	51
Figure 8-2	Turn Warrants for Higher Speed Rural Roads (>= 100km/h)	52
Figure 8-3	Turn Warrants for Lower Speed Rural Roads (< 100km/h)	52
Figure 10-1	Significance of Impacts Pre-Management Strategy	65
Figure 10-2	Significance of Impacts Pre-Management Strategy (Northern)	66
Figure 10-3	Significance of Impacts Pre-Management Strategy (Central)	67
Figure 10-4	Significance of Impacts Pre-Management Strategy (Southern)	68
Figure 10-5	Significance of Impacts Post-Management Strategy	69
Figure 10-6	Significance of Impacts Post-Management Strategy (Northern)	70
Figure 10-7	Significance of Impacts Post-Management Strategy (Central)	71
Figure 10-8	Significance of Impacts Post-Management Strategy (Southern)	72
Figure 11-1	Case Study: Facility Locations	81
Figure 11-2	Case Study: Scoping Assessment	82
Figure 11-3	Case Study: Assessed Infrastructure Locations	83

Appendices

Appendix A	Approximate Locations of Other Projects
Appendix B	Project Activities and Traffic Generation
Appendix C	Annual Project Traffic Volume Forecasts
Appendix D	Case Studies: Fitness For Use Assessment
Appendix E	Case Studies: Intersection Assessment
Appendix F	Case Studies: Pavement Assessment

Abbreviations

Abbreviation	Description
AADT	Annual Average Daily Traffic
AUL	Auxiliary lane turn treatment
AUL(S)	Auxiliary (Short)
BAL	Basic Left turn treatment
BAR	Basic Right turn treatment
CHR	Channelised Right turn treatment
CHR(S)	Channelised Right (Short) turn treatment
CGPF	Central Gas Processing Facility.
CV	commercial vehicle
DOS	Degree of Saturation
EIS	Environmental Impact Statement
ESAs	Equivalent Standard Axles
FCF	Field Compression Facility
GARID	Guidelines to Assessment of Road Impacts of Development
GRC	Goondiwindi Regional Council
HV	heavy vehicle
LNG	Liquefied Natural Gas
LV	light vehicle
Mtpa	Million tonnes per annum.
MW	Megawatt = one million (10 ⁶) watts
QTRIP	Queensland Transport and Roads Investment Program
RIA	Road Impact Assessment
RMP	Road-use Management Plan
SPA	Sustainable Planning Act 2009
SREIS	Supplementary Report to the Environmental Impact Statement
TJ	Terajoule
TJ/d	Terajoules per day
TOR	Terms of Reference
TMR	Department of Transport and Main Roads
TRC	Toowoomba Regional Council
TWAF	Temporary Workers Accommodation Facility
VKT	vehicle kilometres travelled
vpd	vehicles per day
vph	vehicles per hour
VT	exposure score
WDRC	Western Downs Regional Council

Glossary

Word, Phrase or Term	Definition
Annual Average Daily Traffic	The average traffic volume expected over a 24-hour period in a given year.
Austroads	The association of Australian and New Zealand road transport and traffic authorities that aims to promote improved road transport outcomes and produces nationally accepted guidelines.
Auxiliary lane	The portion of the carriageway adjoining the through traffic lanes, used for speed change or for other purposes supplementary to through-traffic movement.
Background traffic	The expected volume of traffic at a particular point without the addition of the traffic associated with the project under consideration.
Commercial Vehicles	See heavy vehicles.
Council	Western Downs Regional Council (WDRC), Goondiwindi Regional Council (GRC) or Toowoomba Regional Council (TRC) as appropriate.
Council-controlled road	Roads which are administered, funded and maintained by local government.
Crash rate	A crash rate is a ratio of the number of crashes to some common denominator, usually vehicle kilometres travelled, head of population or period of time. Crash rates allow more meaningful comparisons to be made between crash locations.
Department of Transport and Main Roads	Queensland government department responsible for planning, managing and delivering Queensland's integrated transport environment.
Environmental Impact Statement	A structured document which is prepared to identify and assess the environmental impacts of a proposed activity which is either designated as development or 'likely to significantly affect the environment'. It also outlines safeguards to mitigate or control such impacts.
Exposure score	The product of the daily traffic volume and the daily train volume utilising the rail crossing.
Gathering line	A small diameter pipeline through which either coal seam gas or produced water moves through on a petroleum lease from the wellhead to the processing facility.
Growth rate	The annual percent change in the number of vehicles passing a given point on a road.
Heavy Vehicles	A heavy vehicle is defined as any vehicle with three or more axles or with dual tyres on the rear axle. Also referred to as commercial vehicles (CV).
Intersection capacity	The maximum sustainable traffic flow rate at which vehicles can reasonably be expected to traverse an intersection under given roadway, geometric, traffic, environmental and control conditions; usually expressed as vehicles per hour.
Interrupted traffic flow	Where the flow of traffic is stopped or interrupted periodically by fixed external elements, such as traffic signals or signage, irrespective of the traffic volume. This traffic engineering term does not describe operating conditions.
Light vehicles	Cars, motorcycles and cars towing caravans.
Permanent infrastructure	Any infrastructure (roads, tracks, bridges, culverts, dams, bores, buildings, fixed machinery, hardstands areas, airstrips, helipads, pipelines etc), which is to be left by agreement with the landowner.
Priority-controlled intersection	An intersection where the movement of vehicles is controlled by road rules and traffic signs only, for example stop or give way signs, as opposed to traffic signals or a roundabout.
Project	Surat Gas Project.
Project development area	The area for which Arrow is seeking approval to develop through the EIS assessment process.
Quantitative	An assessment based on the amount or number of something.
Queensland Stock Route	Network of facilities established to facilitate the movement of livestock on foot between grazing areas and markets. The network consists of areas for stock to travel along (often within existing road corridors, adjacent to roadways) as well as areas for

Word, Phrase or Term	Definition
	livestock to rest overnight including water facilities and holding yards.
Road Impact Assessment	An assessment which identifies the potential road impacts of a proposed development and appropriate mitigation measures in accordance with the requirements of the Department of Transport and Main Roads <i>Guidelines for Assessment of Road Impacts of Development</i> .
Sealed Road	Generic terminology adopted within the Road Impact Assessment to identify a road that has generally been constructed using a bituminous material to form a protected road surface.
Sensitive place	A sensitive place means any of the following places:
	A dwelling
	 A library, childcare centre, kindergarten, school, college, university or other educational institution
	 A hospital, surgery or other medical institution
	 A protected area or an area identified under a conservation plan as a critical habitat or an area of major interest, under the Nature Conservation Act 1992
	 A marine park under the Marine Parks Act 1982
	 A park or garden that is open to the public.
State-Controlled Road	A road declared to be controlled by the Department of Transport and Main Roads, including all AusLink National Roads in Queensland.
Uninterrupted traffic flow	Where the flow of traffic is not stopped or interrupted by any fixed external elements, such as traffic signals. This traffic engineering term does not describe operating conditions.
Unsealed road	Generic terminology adopted within the Road Impact Assessment to identify roads that have been generally constructed to a formed and gravelled standard or a higher quality formed but ungravelled standard. In the context of this assessment the adopted terminology relates to the construction standard of the road not the ownership of the road (i.e. gazetted road versus private access road).
Unsealed track	Generic terminology adopted within the Road Impact Assessment to identify roads that have been generally constructed to an unformed standard. In the context of this assessment the adopted terminology relates to the construction standard of the road not the ownership of the road (i.e. gazetted road versus private access road).
Vehicle Kilometres of Travel	A measure of traffic demand and is the length of a section of road in kilometres multiplied by the AADT on it. The yearly VKT is the daily VKT multiplied by the number of days in that year (365 or 366 days).
Vehicles per day	The number of vehicles associated with a given location or activity during a 24-hour period.
Vehicles per hour	The number of vehicles associated with a given location or activity during a one hour period.

[This page has been left intentionally blank]

1 Proponent and Project Overview

1.1 Proponent Introduction

Arrow Energy Pty Ltd (Arrow) is an integrated energy company with interests in coal seam gas field developments, pipeline infrastructure, electricity generation and proposed liquefied natural gas (LNG) projects.

Arrow has interests in more than 65,000 km² of petroleum tenures, mostly within Queensland's Surat and Bowen basins. Elsewhere in Queensland, the company has interests in the Clarence-Moreton, Coastal Tertiary, Ipswich, Styx and Nagoorin Graben basins.

Arrow's petroleum tenures are located close to Queensland's three key energy markets; Townsville, Gladstone and Brisbane. The Moranbah Gas Project in the Bowen Basin and the Tipton West, Daandine, Kogan North and Stratheden projects in the Surat Basin near Dalby comprise Arrow's existing coal seam gas production operations. These existing operations currently account for approximately 20% of Queensland's overall domestic gas production.

Arrow supplies gas to the Daandine, Braemar 1 and 2, Townsville and Swanbank E power stations, which participate in the National Electricity Market. With equity in Braemar 2, Daandine and Townsville power stations, Arrow has access to up to 600 MW of power generation capacity.

Arrow and its equity partner for the Moranbah Gas Project, AGL Energy have access rights to the North Queensland Pipeline, which supplies gas to Townsville from the Moranbah Gas Project. They also hold the pipeline licence for the proposed Central Queensland Gas Pipeline between Moranbah and Gladstone.

Arrow is currently proposing to develop the Arrow LNG Project, which is made up of the following aspects:

- > Arrow LNG Plant: the proposed development of an LNG Plant on Curtis Island near Gladstone, and associated infrastructure, including the gas pipeline crossing of Port Curtis
- > Surat Gas Project: the proposed upstream gas field development in the Surat Basin, subject of this assessment
- > Arrow Surat Pipeline Project (formerly the Surat Gladstone Pipeline): the proposed 450km transmission pipeline that will connect Arrow's Surat Basin coal seam gas developments to Gladstone
- > Bowen Gas Project: the proposed upstream gas field development in the Bowen Basin
- > Arrow Bowen Pipeline: the proposed transmission pipeline that will connect Arrow's Bowen Basin coal seam gas developments to Gladstone.

1.2 Project Overview

Arrow proposes expansion of its gas operations in the Surat Basin through the Surat Gas Project. The need for the project arises from the growing demand for gas in the domestic market, global demands and the associated expansion of LNG export markets.

The project development area is shown on Figure 1-1. The spatial extents of the road network assessed are those bound by the former Darling Downs Region Department of Transport and Main Roads (TMR) shown on Figure 1-1. This boundary has been adopted as it is considered appropriate to inform the assessments in relation to the significance of the project's potential impact and as it ensures consistency with the spatial definitions adopted for the Environmental Impact Statement (EIS) Road Impact Assessment (RIA).

The main changes to the project description presented in the EIS, which have the potential to affect the EIS RIA, include changes to the size of the project development area, the number of facilities and wells, the development sequence and timing, and workforce numbers. Details of these changes are provided below.

Due to the relinquishment of parcels of land within Arrows' exploration tenements, the project development area has reduced from 8,600 km² to 6,100 km². The majority of these relinquishments were made in the Goondiwindi development region. With a smaller project development area, there has been a reduction in the number of production wells anticipated to be drilled, from 7,500 to approximately 6,500.

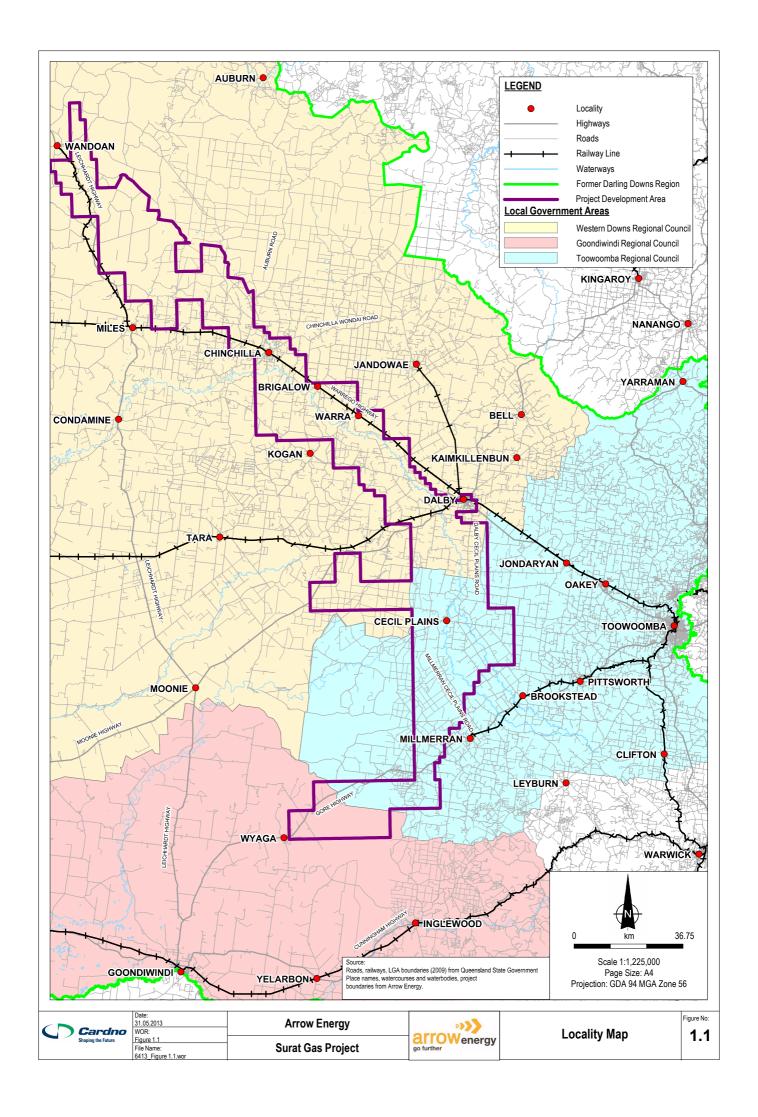
In addition to single wells, multi-well pads will also be drilled. Multi-well pads will comprise up to 12 wells per pad with an average of nine wells per pad, spaced approximately 8m apart.

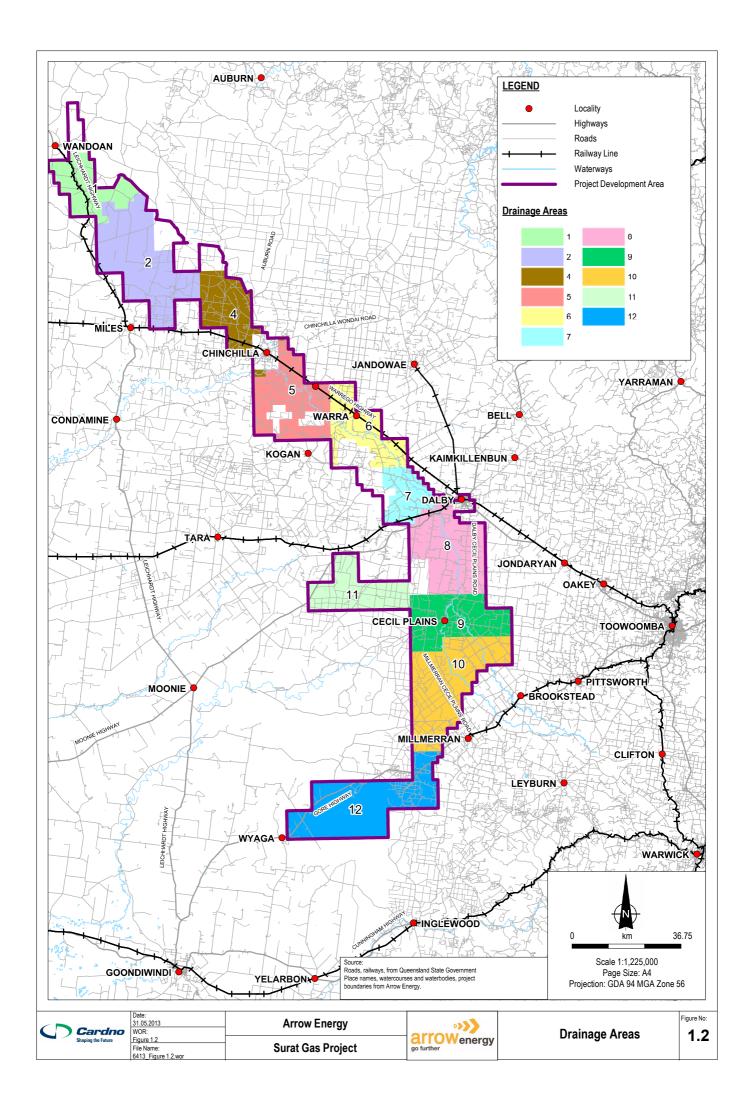
The field development sequence planning has advanced and the project development area is now described in terms of eleven drainage areas, as opposed to the five development regions that were presented in the EIS project description. Drainage areas correspond with the gas reserves that will be fed into each central gas processing facility (CGPF). It is currently expected that eight of these drainage areas will be initially developed for the Surat Gas Project with each drainage area containing wells, a water and gas gathering network and a CGPF. The location of the eleven drainage areas is shown on Figure 1-2.

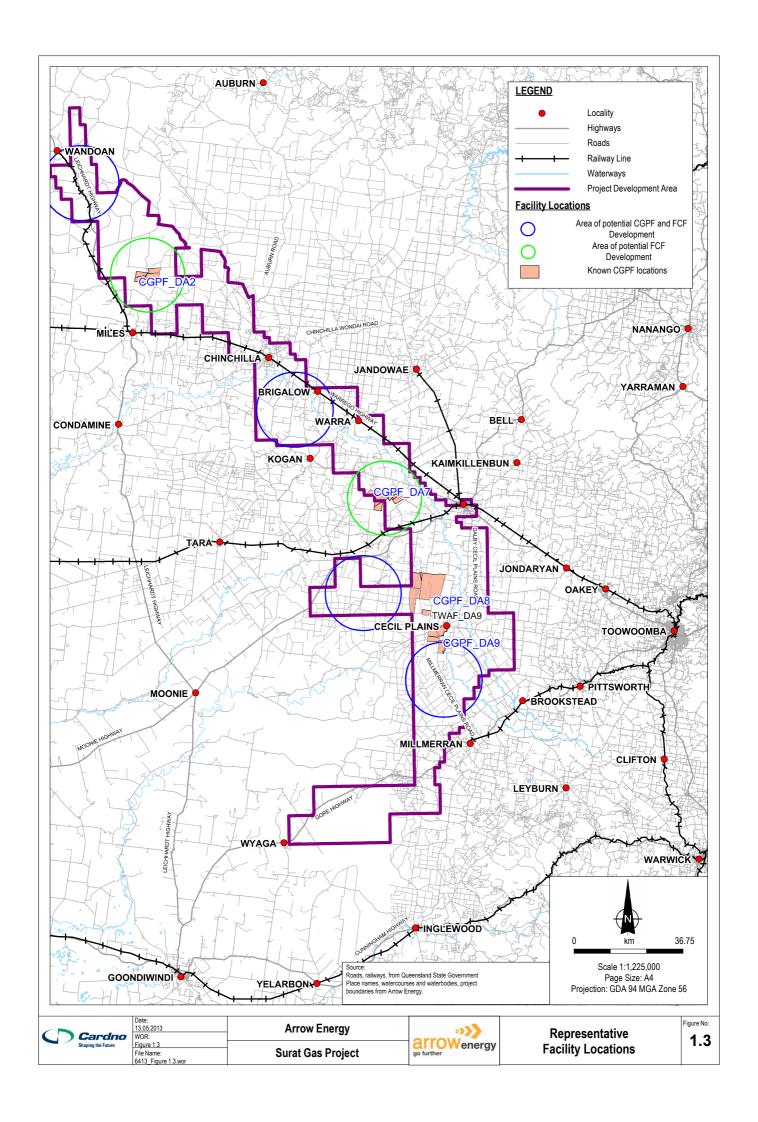
This constitutes a reduction in the number of CGPFs from 12 described in the EIS to eight. A further three drainage areas may be developed with favourable reservoir outcomes and future market conditions. Integrated processing facilities, which were referred to in the EIS, are referred to in the SREIS as a water treatment facility co-located with a CGPF.

Arrow has identified properties on which to site four CGPFs. A fifth site has been identified by Arrow to locate a temporary workers accommodation facility (TWAF). It is intended that all properties identified for major facilities (i.e. CGPFs, water treatment facilities, TWAFs) will either be owned by Arrow, or leased under a long-term arrangement. The specific locations of the CGPFs and TWAF within these sites have not been determined and the final location of infrastructure will be guided by site-specific technical, environmental and social features. The number of TWAFs has been revised from five to approximately six. Sites for the remaining five TWAFs are yet to be determined but will likely be located adjacent to CGPFs, as presented in the EIS.

The number of water treatment facilities has been reduced from six described in the EIS to two. These will be co-located with CGPFs. Arrow has committed not to dispose of brine (salt), stored at water treatment facilities, to the registered landfill site at Swanbank. However, disposal to landfill remains the base case for the management of brine. Arrow expects other landfill sites to be developed in response to the demand created by the coal seam gas industry and to be available to accept brine (salt) produced in its operations. For the purposes of assessing the maximum expected vehicle movements, the EIS assumed transport and disposal of brine to Swanbank, originating from six indicative water treatment (and storage) facilities. Arrow will not use Swanbank for disposal of brine (as a salt concentrate) and proposes to use a new (suitably licensed) facility in the region. Vehicle movements associated with the transport of brine to landfill are however assessed in the supplementary assessment as originating from each of the two water treatment facilities. A conceptual landfill location east of Toowoomba produces the worst case for transport and disposal of brine and has therefore been adopted for the supplementary roads and transport assessment.


The number of depots, which accommodate administration, engineering and production, stores, workshops, laboratories and associated personnel, has also reduced from three described in the EIS, to two. The depots are likely to be located in the township of Dalby, and the township of Miles. A depot is not expected to be required in Millmerran as originally considered.


The project construction activities will require foundation aggregate for the construction of camps, access tracks, wells and facilities. The estimated aggregate volume has been revised to capture updates to the project design (e.g. the reduction in the anticipated total number of wells), temporary aggregate requirements for construction (which expand on the hardstand material footprint), multi-well pads and provision for access roads based on nominal lengths and widths (which will be verified once well and facility locations are known).


1.3 Project Schedule

For the purposes of the SREIS RIA, Arrow has developed a project schedule which details the potential establishment, operation periods and decommissioning dates for all production wells and facilities supporting the project. The assessed schedule has been formulated to present a worst case development scenario from a traffic engineering perspective. It assumes rapid development of the production wells and facilities resulting in the most intense forecast of peak traffic demands. In addition, it assumes that all 6,500 production wells potentially required to support the project are ultimately established, operated and decommissioned.

Use of the assessed project schedule therefore provides conservative estimates of both the project's total transport task and the peak traffic demands generated by the project. The utilisation of the formulated project schedule provides road authorities greater confidence that the traffic impacts that ultimately eventuate are unlikely to be worse than that reported herein.

2 Assessment Overview

2.1 Objectives of the Road Impact Assessment

Cardno (Qld) Pty Ltd (Cardno) has been commissioned by Coffey Environments Pty Ltd (Coffey) on behalf of Arrow, to prepare an updated RIA for the proposed Surat Gas Project as part of the SREIS.

Since lodgement of the EIS in December 2011, Arrow has reviewed and in turn revised project planning from that presented in the EIS. The recent changes to project planning require that additional assessment be completed to validate the previously reported road impacts associated with the project. Furthermore, additional assessment is required to confirm that the conclusions previously made in relation to the effectiveness of the proposed road management strategies also remain valid. The recent changes to project planning therefore warrant the preparation of an updated RIA to inform the SREIS.

The objectives of the SREIS RIA are to:

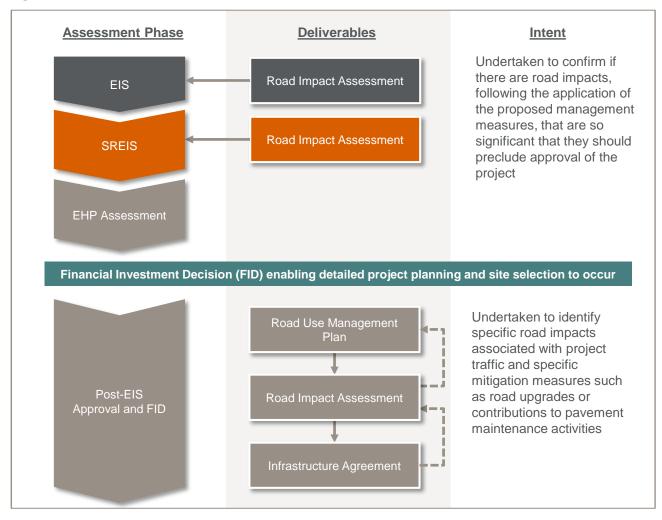
- > Fulfil the requirements of the Terms of Reference (TOR) for the Surat Gas Project EIS
- > Reconfirm existing baseline road conditions and the key environmental values to be protected
- > Determine the potential impact of project traffic on the key road values utilising an environmental values assessment approach
- > Determine the potential impact of project traffic on the safety and efficiency of the road network utilising a traditional traffic engineering assessment approach
- > Confirm that the planned management strategies remain effective at avoiding, minimising or mitigating the potential road impacts associated with the project
- > Present the findings of the revised assessment in a technical report to be included as an appendix to the Surat Gas Project SREIS.

The SREIS RIA addresses only the project's road-based transport impacts. Impacts associated with other transport modes (for example pipeline, air, rail or sea) are beyond the scope of this assessment.

2.2 SREIS RIA Context

The SREIS RIA presents a strategic assessment of the intensity and context of the potential road impacts associated with the Surat Gas Project. The SREIS RIA has been undertaken to inform assessment of the project's EIS. As typical for major projects with dispersed activity, detailed planning including the selection of all project sites has not yet been finalised. Generally EIS assessment is required to enable sufficient commercial certainty for detailed planning, including site acquisition, to be finalised.

The SREIS RIA seeks to establish if there are likely to be any road impacts that cannot be effectively managed through either the application of appropriate approval conditions, or through the application of the planned management strategies. That is, the SREIS RIA seeks to confirm if there are likely to be any residual road impacts so significant post implementation of approval conditions and the planned management strategies that they should preclude approval of the project.


Importantly, consistent with the intent of the SREIS assessment phase, the SREIS RIA does not seek to identify a comprehensive list of the proponent funded road works or monetary contributions ultimately required to support the project. Instead the SREIS RIA seeks to confirm if the planned management strategies will be effective at avoiding, minimising or mitigating the road impacts associated with the project. The SREIS RIA has been prepared to inform the establishment of appropriate approval conditions and management strategies which will enable specific proponent funded road works and contributions to be ultimately identified.

Arrow will prepare revised RIA's for each of the road authority road networks utilised by project traffic following assessment of the EIS. The RIA's prepared following assessment of the EIS and finalisation of project facility sites will inform the identification of the specific road works and contributions required to support the project. The proponent funded road works and contributions identified through the future RIA's will be included in future infrastructure agreements entered into with the relevant road authorities. This approach is consistent with typical practice for large, geographically dispersed projects in Queensland.

It is reinforced that it is pre-emptive to undertake the future RIA's as part of the current SREIS assessment phase given there is still a degree of uncertainty in relation to the exact location of all project sites and as this level of detail is not required to inform the development of appropriate EIS approval conditions.

The context and intent of the current SREIS RIA and future assessments is summarised on Figure 2.1.

Figure 2-1 Context of the SREIS RIA

2.3 SREIS RIA Methodology

The following key steps were undertaken in preparing the SREIS RIA:

- > Collection of updated data from road authorities pertaining to existing road conditions including for example, traffic volumes, stock routes, vehicle crash history, and school bus routes
- > Inspection of the road network at selective sites to further characterise road conditions
- > Review of historical traffic growth patterns and consideration of potential future traffic growth
- > Estimation of the number and type of vehicles likely to be generated by the activities associated with establishment, operation and decommissioning of each of the different project facilities
- > Estimation of the project's traffic generation based upon the project activities scheduled to occur in any given year and the traffic generation potential of each of the individual activities
- > Development of management strategies to avoid, minimise and mitigate the potential impacts associated with project traffic
- > Assessment of the effectiveness of the planned management strategies utilising both an environmental values and a traditional traffic engineering assessment approach supported by case study assessments.

The methodology undertaken for the SREIS RIA is appropriate to inform review of the effectiveness of the planned management strategies and to inform development of appropriate EIS conditions.

2.4 SREIS RIA Assessment Approaches

The TOR for the Surat Gas Project requires both the intensity and context of impacts to be assessed to establish the significance of potential impacts. Consistent with other technical studies prepared for the EIS, the EIS RIA utilised an environmental values assessment approach to determine the effectiveness of the planned management strategies and the residual impacts which may remain post their application.

The SREIS RIA expands upon the work previously undertaken as part of the EIS applying both an environmental values assessment approach and a more traditional traffic engineering assessment approach. The inclusion of both approaches within the SREIS RIA provides road authorities greater certainty that the planned management strategies will preserve key road environmental values whilst also meeting or exceeding typical traffic engineering practice requirements.

2.4.1 Environmental Values Assessment Approach

The environmental values assessment approach establishes the significance of the project's potential impacts through consideration of the sensitivity of each environmental value and the magnitude of the project's potential impact upon the value. The sensitivity of an environmental value is determined based upon consideration of its susceptibility or vulnerability to threatening processes or as a consequence of its intrinsic value. The magnitude of a project impact is determined based on consideration of the impact's severity. The significance of the project's impact has been considered both pre and post the implementation of the planned management strategies.

2.4.2 Traditional Traffic Engineering Assessment Approach

The traditional traffic engineering assessment approach is based upon the principles established within TMR's *Guidelines for Assessment of Road Impacts of Development* (GARID). The GARID assessment approach is utilised in Queensland to identify the specific management strategies such as intersection upgrades and proponent contributions towards pavement maintenance that are relevant to a proposed development and can reasonably be conditioned. Figure 2-2 details the generic assessment process detailed within GARID and shows the sections of the SREIS RIA that they correspond to. Both the EIS and SREIS RIA included consideration for Step 1 of the GARID process, with additional steps being considered in the SREIS RIA.

Arrow has identified several sites at which it is likely, but not certain, that major project facilities will ultimately be located. Case study assessments have been undertaken for these likely sites to confirm the effectiveness of the planned management strategies at avoiding, minimising and mitigating the impacts associated with project traffic. The intent of this assessment approach is to establish that the planned management strategies will ultimately result in proponent funded road works and contributions which meet or exceed typical traffic engineering practice requirements. The case study assessments are documented in Section 11.

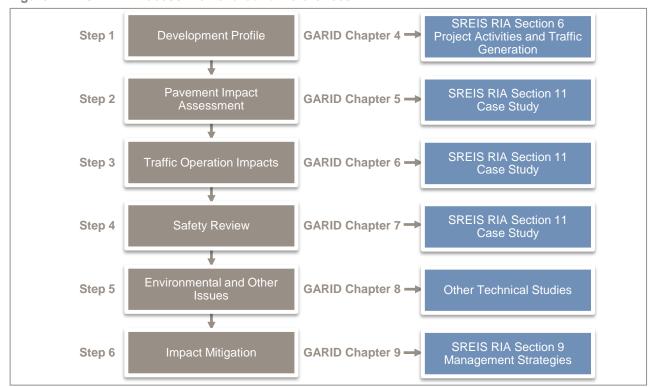


Figure 2-2 GARID Process Flowchart and References

3 Legislative Context

The legislative context for the SREIS RIA was detailed in the EIS RIA. The legislative processes and powers utilised by State and local government road authorities presented within the EIS RIA remain current and therefore consideration of the processes and powers has not been reproduced herein to aid brevity. Should readers require information in relation to relevant legislative processes and powers they are directed to refer to the EIS RIA.

Whilst it is understood and recognised that State government legislation and TMR polices relating to assessment of development are currently under review, the published guidance is still unchanged from that in place at the time of the EIS RIA.

[This page has been left intentionally blank]

4 Existing Road Environment Conditions

4.1 Functional Road Hierarchy

Figure 4.1 summarises the Highways, Regional Connecting Roads, Rural Connecting Roads and Rural Access Roads within proximity to the project study area. The adopted functional road hierarchy definitions are consistent with that identified within the EIS RIA. The updated functional road hierarchy presented on Figure 4.1 remains very similar to that presented within the EIS RIA, and therefore confirms the continued validity of the condition data relied upon in preparing the EIS RIA.

4.2 Road Construction Standard

Figure 4.2 summarises the existing construction standard of all roads within proximity to the project study area where the data has been previously made available by road authorities. The generic terminology for road construction standards used for this assessment is as follows:

- > Sealed road has been generally constructed using a bituminous material to form a protected road surface
- > Unsealed road has been generally constructed to a formed and gravelled standard or a higher quality formed but un-gravelled standard
- > Unsealed track has been generally constructed to an unformed standard.

4.3 Traffic Volumes

Figure 4.3 summarises the 2011 Average Annual Daily Traffic (AADT) volume data supplied by TMR for all State-controlled roads within the project study area. This is provided as an update to the 2009 AADT volume data included in the EIS RIA which was the most current at the time of the previous assessment.

4.4 Multi-Combination Vehicle Routes

Figure 4.4 identifies the designated multi-combination routes within proximity to the project study area based upon data supplied by TMR in March 2013. Multi-combination vehicle routes include roads on which the use of B-Doubles or Road Trains is specifically approved. The updated multi-combination routes presented on Figure 4.4 are very similar to that presented within the EIS RIA, and therefore confirm the continued validity of the road condition data relied upon in preparing the EIS RIA.

4.5 School Bus Routes

Figure 4.5 summarises the school bus routes within proximity to the project study area based upon data supplied by the Queensland Government in February 2013. The updated school bus routes presented on Figure 4.5 are generally similar to the routes presented within the EIS RIA. The updated data continues to indicate that the various school bus routes radiate from the townships of Dalby, Chinchilla, Miles, Tara, Pittsworth, Millmerran, Wandoan and Goondiwindi where education facilities are located. The updated data also continues to identify that the school bus routes in proximity to the project study area typically utilise Highways and the higher-order local roads such as Regional Connecting Roads. The updated school bus route data therefore confirms the continued validity of the condition data relied upon in preparing the EIS RIA.

4.6 Rail Crossings

Figure 4.6 summarises the public rail crossings in proximity to the project study area based upon data supplied by Queensland Rail in February 2013. The updated rail crossing data continues to indicate that the majority of rail crossings incorporate passive control systems such as signage. The updated rail crossing data therefore confirms the continued validity of the condition data relied upon in preparing the EIS RIA.

4.7 Stock Routes

Figure 4.7 summarises the stock routes in proximity to the project study area based upon data supplied by the Queensland Government in March 2013. The updated stock routes presented on Figure 4.7 are very similar to the routes presented within the EIS RIA. The updated stock route data therefore confirms the continued validity of the condition data relied upon in preparing the EIS RIA.

4.8 Road Safety

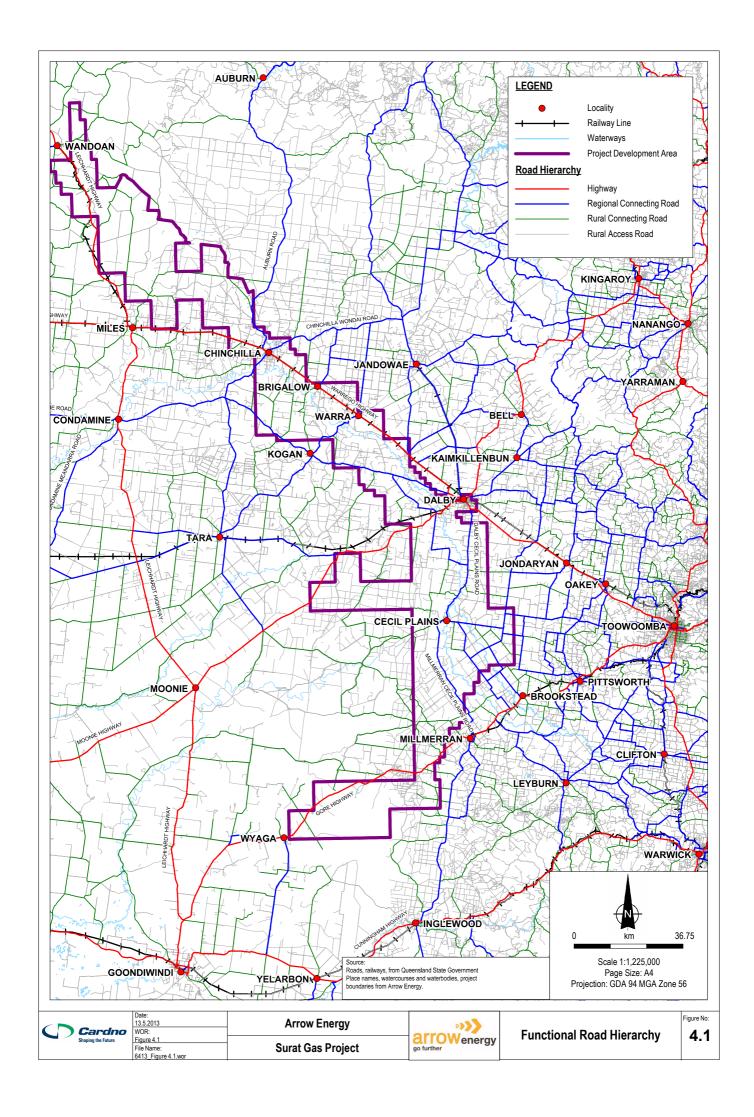
Figure 4.8 summarises the calculated crash rates per 100 million vehicle kilometres travelled (VKT) for the State-controlled roads in proximity to the project study area based upon raw crash data supplied by TMR in February 2013. The reported crash data covers the following time periods dependent on the reporting and processing timeframes for the different crash severities:

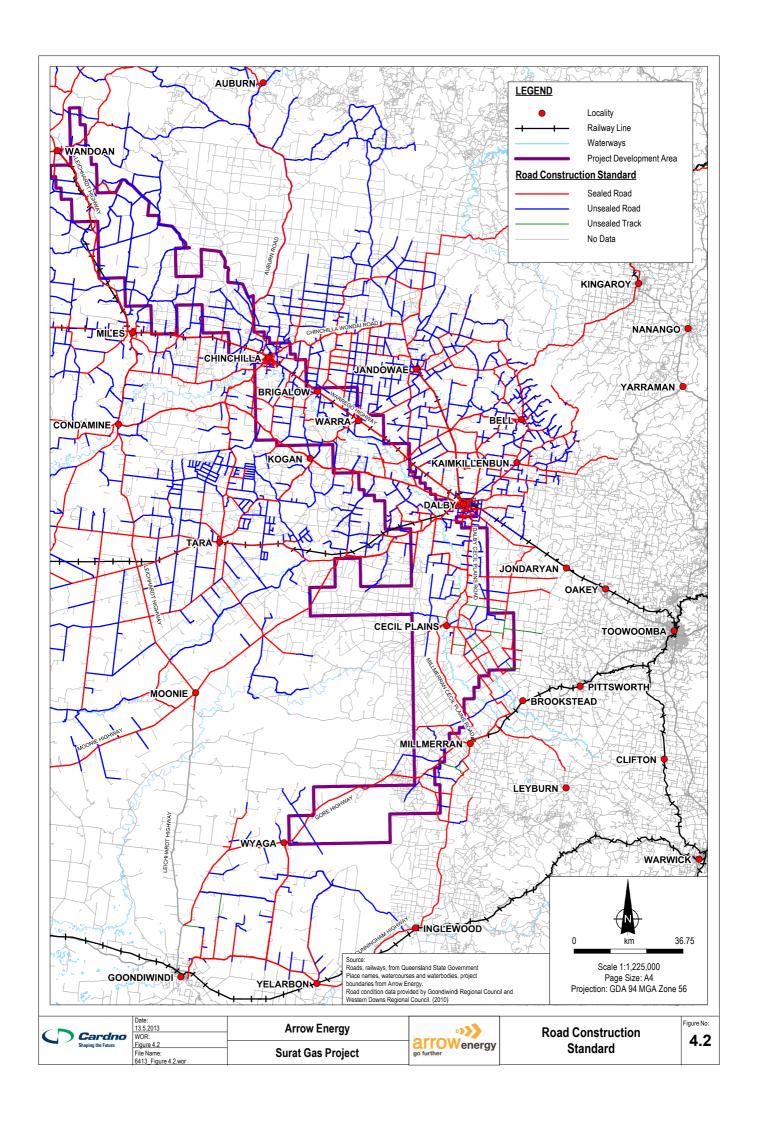
- > Fatal crashes: 1 January 2005 to 31 October 2012
- > Hospitalisation crashes: 1 January 2005 to 30 September 2012
- > Non serious crashes: 1 January 2005 to 30 June 2010.

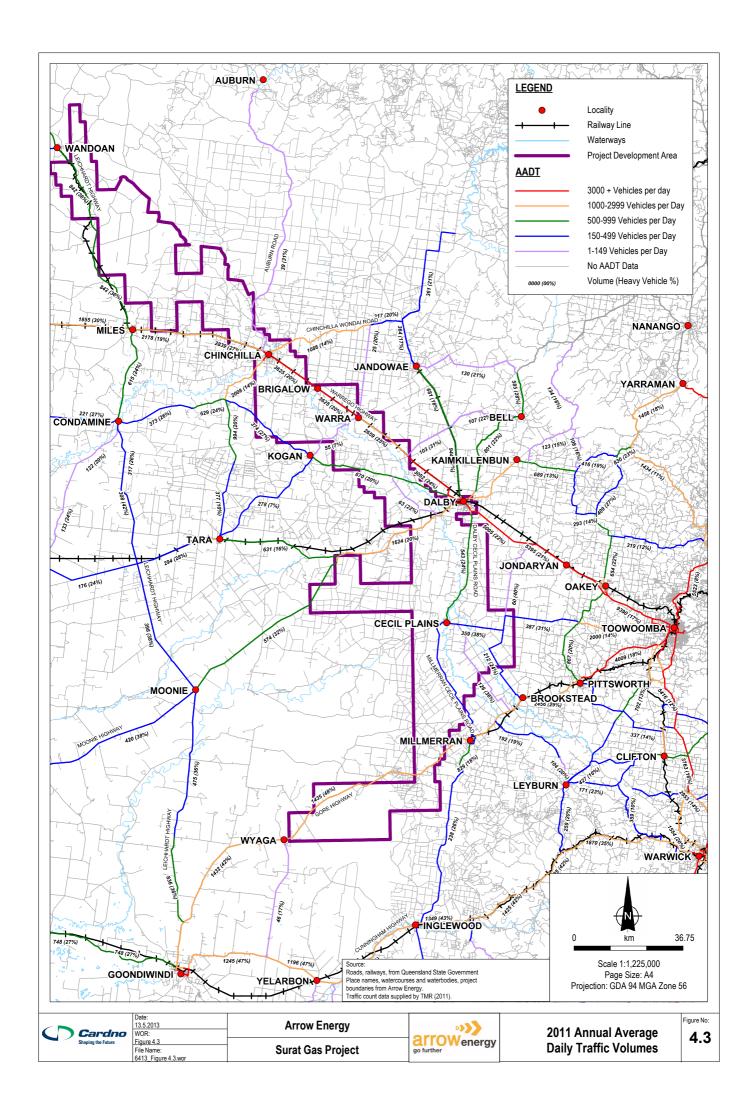
The reported crash rates are based on AADT and hence are only able to be calculated for State-controlled roads for which AADT data is readily available in a spatial format.

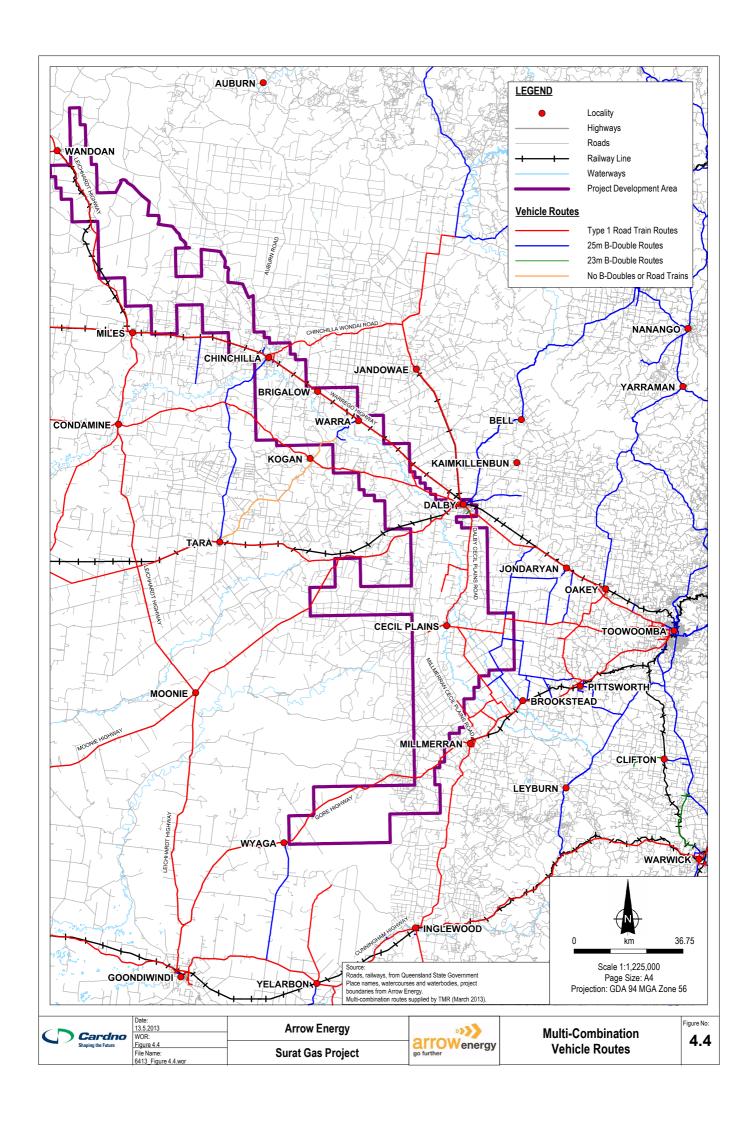
As a means of comparison, Austroad's *Road Safety Engineering Risk Assessment Part 7: Crash Rates Database* indicates that a crash rate of 52 crashes per 100 million VKT is typical for rural roads with undivided sealed carriageways in Queensland. The crash data summarised on Figure 4.8 indicates that the majority of State-controlled roads in proximity to the study area have generally experienced lower than typically expected crash rates. The link sections presented in Figure 4.8 are more disaggregated than presented in the EIS RIA and as a result, there tends to be greater variability in the calculated crash rates as there is a reduced averaging effect.

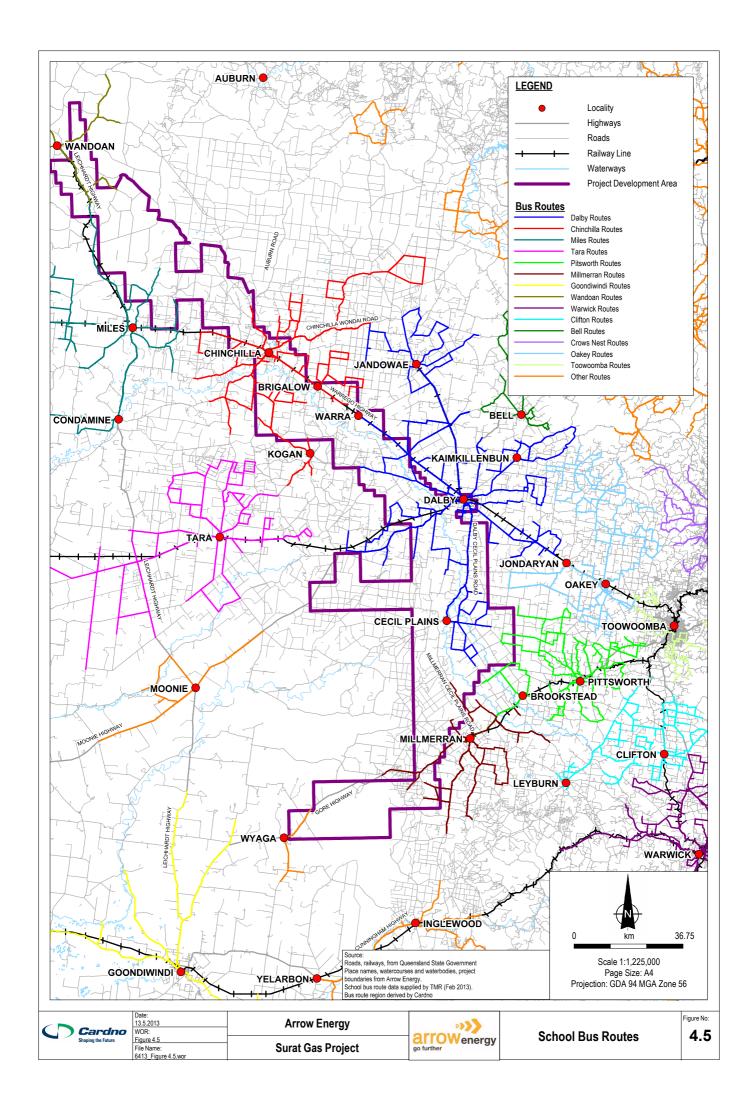
4.9 Motorist Rest Areas

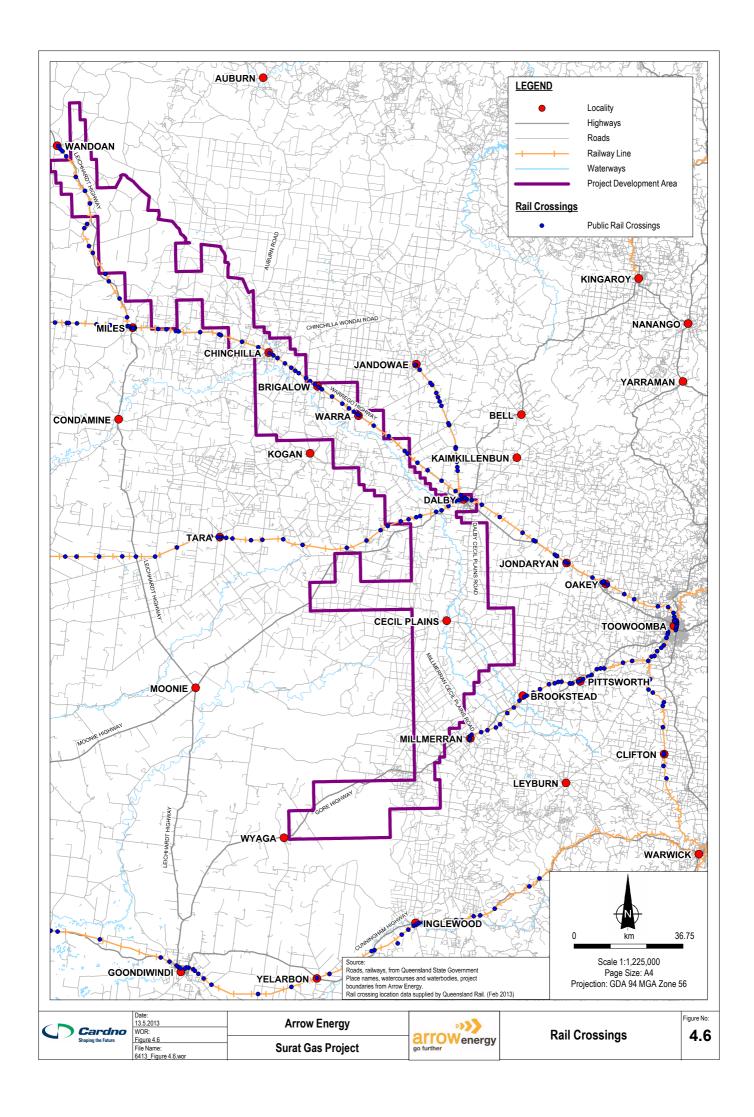

Figure 4.9 summarises the motorist rest areas in proximity to the project study area based upon data supplied by TMR in February 2013. The identified rest areas allow drivers to stop and rest before continuing a drive. Some areas also allow extended rest times including overnight. Additionally, during school holidays and public holiday periods some rest stops operate as 'Driver Reviver' stops. The stops shown also include heavy vehicle rest areas and heavy vehicle stopping places. The updated data presented on Figure 4.9 is generally consistent with that presented in the EIS RIA. The updated motorist rest area data therefore confirms the continued validity of the condition data relied upon in preparing the EIS RIA.

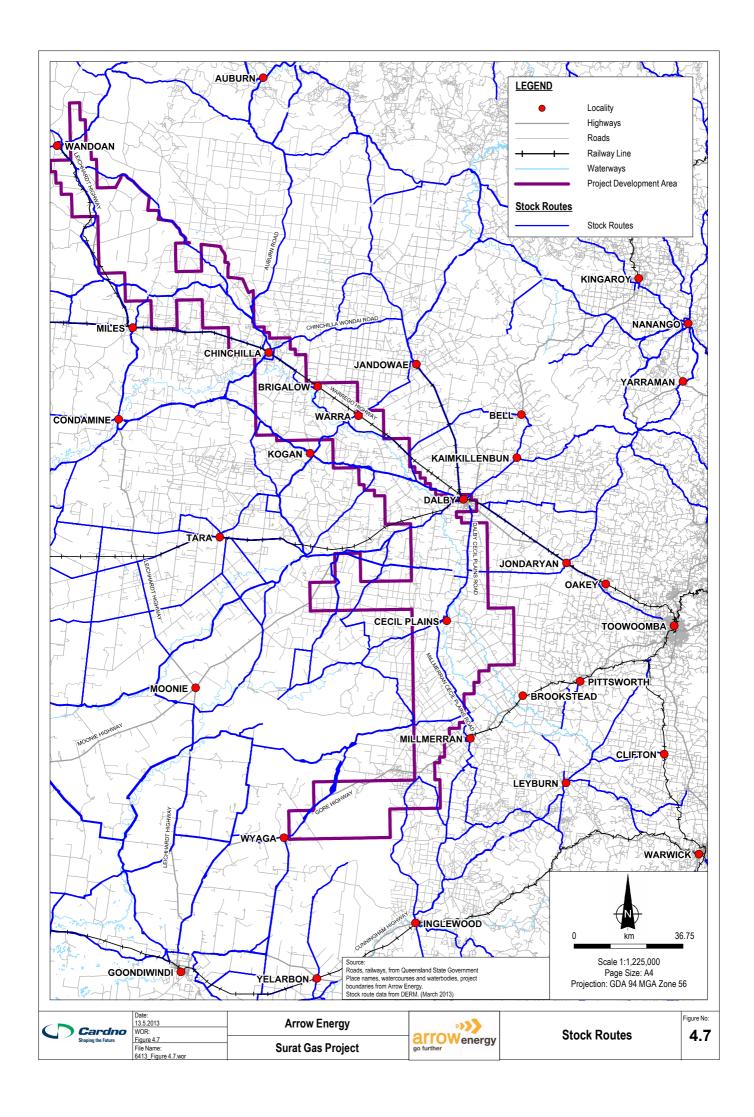

4.10 Pedestrian and Cycle Networks

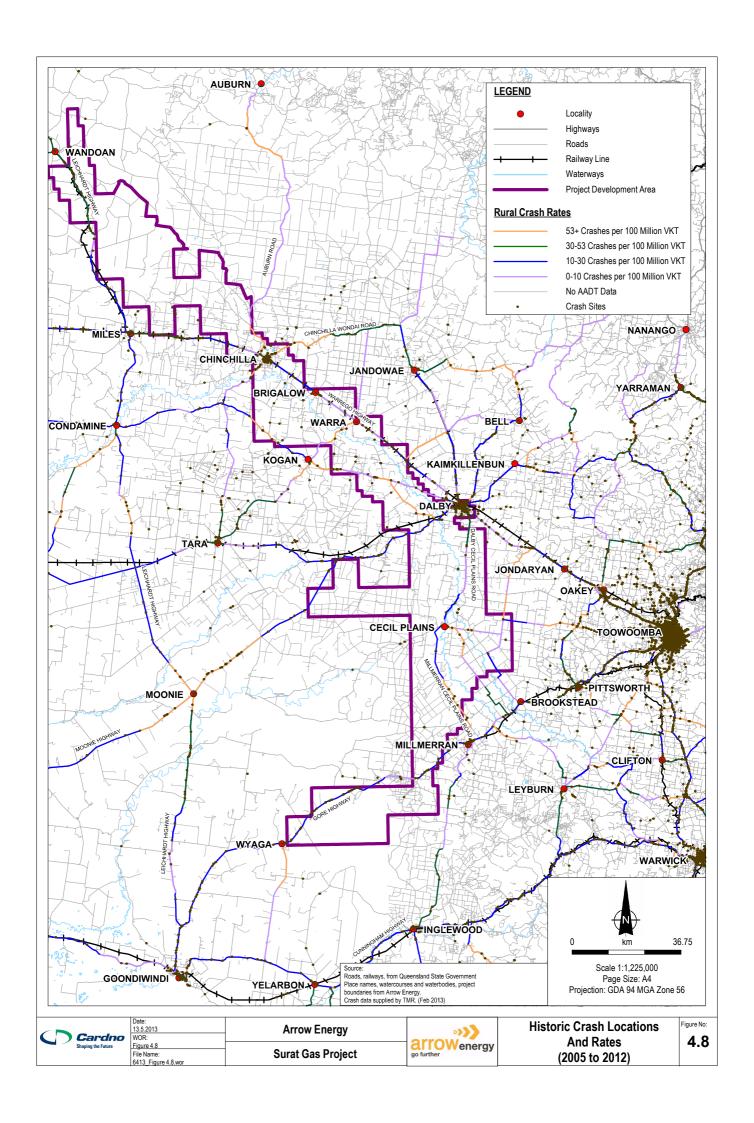

The majority of towns within the project development area have basic pedestrian and cycle infrastructure. Roads outside of the townships typically do not include dedicated cycle facilities such as designated on-road cycle lanes.

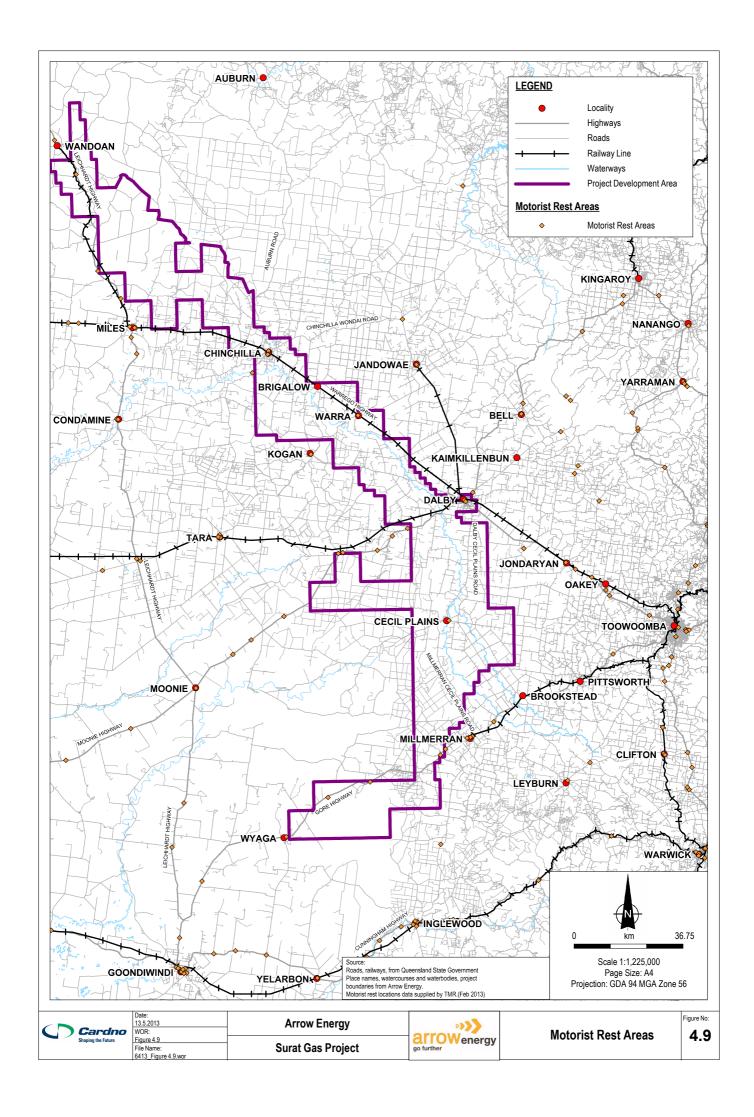

4.11 Public Transport Networks


The Queensland Government provides financial support to Greyhound and Bus Queensland to operate long-distance passenger services throughout Queensland with certain routes covering major towns within proximity to the project study area. Stops are located in Miles, Chinchilla, Brigalow, Warra, Dalby, Tara, Millmerran and Goondiwindi, with connections to Toowoomba, Rockhampton, Mt Isa, Lightening Ridge and Brisbane. These services travel on highways (i.e. Warrego Highway, Moonie Highway and Gore Highway) within the project area and bus frequencies vary from twice per week (Toowoomba to Lightning Ridge) to daily (Brisbane to Mt Isa).









[This page has been left intentionally blank]

5 Future Baseline Traffic Volumes

5.1 Historic Traffic Growth

Annual traffic volumes on the roads likely to service the project have varied depending on the proximity to Dalby and other urban areas and on the period over which the observations have been made, with higher growth generally observed in recent years. Traffic volumes on the roads servicing the project have typically changed by between -1%p.a. (decline) and 3%p.a. (increase) over the past ten years. While higher long term annual growth rates ranging between 4% and 8% have been observed at a few isolated locations this is not typical of the long term traffic volume growth generally observed across the region.

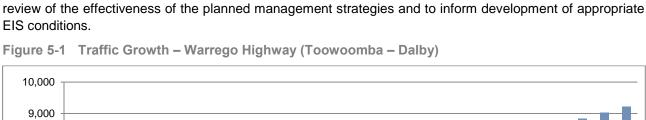
5.2 Cumulative Impacts

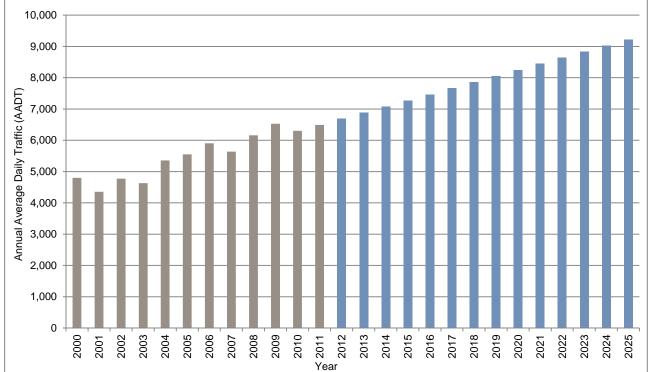
Table 5-1 provides a summary of other projects currently underway or under investigation in the vicinity of the Surat Gas Project. The location of these projects is shown at Appendix A. Whilst the majority of these projects were listed in the EIS RIA, a number of additional projects have since been identified, including:

- > Bundi Coal Project
- > Ironbark Project
- > North Surat Collingwood Coal Project
- > North Surat Taroom Coal Project
- > Norwood Coal Project
- > The Range Project
- > Woori Coal Project.

Table 5-1 Other Projects in Proximity to Project Study Area

Proposed Project	Proponent	Estimated Start Date	Estimated Duration of Project
Arrow Surat Pipeline	Arrow Energy Pty Ltd	2013	35 years
Australia Pacific LNG Project (APLNG)	Origin Energy and Conoco Phillips	2012	35 years
Bloodwood Creek Queensland Stage 2	Carbon Energy (Operations) Pty Ltd.	Unknown	40-50 years
Bundi Coal Project	Metro Coal Limited	2013	20 years
Cameby Downs Expansion Project	Syntech Resources Pty Ltd	2014	30 years
CS Energy Kogan Creek Solar Boost Project	CS Energy Qld AREVA Solar	2013	Unknown
Elimatta Coal Project	Taroom Coal Proprietary Limited	2013	25 years
Emu Swamp Dam Project	Southern Downs Regional Council	Unknown	18 months
Gladstone Liquefied Natural Gas (GLNG) Project	Santos Limited	2011	35 years
Ironbark Project	Origin Energy Pty Ltd	2015	40 years
Nathan Damand Nathan Pipeline	Sunwater	2012	2 years
New Acland Coal Mine Stage 3 Expansion Project	New Hope Coal Australia	2010	30 years
North Surat – Collingwood Coal Project	Cockatoo Coal Limited	2013	30 years
North Surat – Taroom Coal Project	Cockatoo Coal Limited	2013	30 years
Norwood Coal Project	Metro Coal Limited	2015	20 years
Queensland Curtis LNG Project (QCLNG)	QGC Pty Ltd (BG Group Business)	2011	35 years
Queensland Hunter Gas Pipeline Project	Hunter Gas Pipeline Pty Ltd	2012	Unknown
'The Range Project'	Stanmore Coal Limited	2013	23 years
Wandoan Coal Project	Xstrata Coal Queensland Pty Ltd	2012	Unknown


Proposed Project	Proponent	Estimated Start Date	Estimated Duration of Project
Woori Coal Project	Surat Coal Pty Ltd	Unknown	30 years


Of the projects listed in Table 5-1, those with a higher traffic generating potential over an extended period of time are generally the larger resource projects (predominately gas and coal production). These projects typically have 20 to 40 year timeframes and will contribute to background growth on the road network over the longer term.

As identified in the EIS RIA, it is expected that for the subset of projects with a large traffic generation potential each of these projects may individually increase traffic volumes by a percentage in the order of 1.0% to 4.0%. Since preparation of the EIS RIA, an additional two years of traffic data has been obtained which includes the traffic associated with the establishment and operation of other recent projects within the region. The recent additional traffic count data generally confirms the previous assumption documented in the EIS RIA that overall network volumes will steadily increase.

To provide context, Figure 5-1 and Figure 5-2 compare the historical and projected daily traffic volumes on various segments of the Warrego Highway. The graphs demonstrate that in the context of the historical growth, a 3% traffic growth rate over the longer term is a reasonable assumption to inform the assessment presented herein. This assumed growth rate is considered to provide sufficient allowance for increased traffic including the cumulative demands potentially associated with other projects and is generally consistent with the range outlined in the EIS RIA (i.e. 2% to 8%).

It is acknowledged that the future RIA undertaken post EIS assessment to inform identification of specific proponent funded works, will likely need to include consideration for the localised impacts that other projects in the vicinity may have. This level of localised consideration is however not warranted at this stage to inform review of the effectiveness of the planned management strategies and to inform development of appropriate EIS conditions.

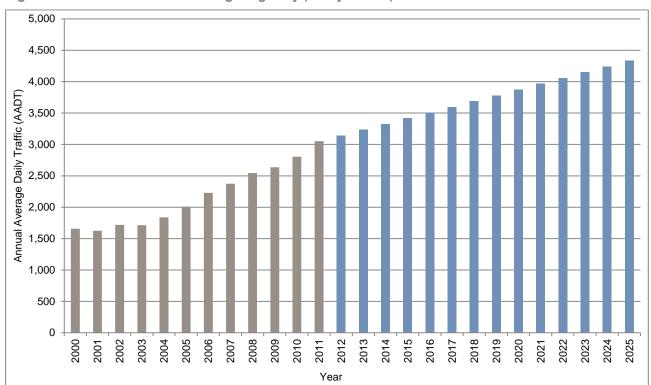


Figure 5-2 Traffic Growth – Warrego Highway (Dalby - Miles)

[This page has been left intentionally blank]

6 Project Activities and Traffic Generation

6.1 Project Activities

The key traffic generating activities undertaken as part of the project have been classified by grouping activities into the three phases of the project's lifecycle. Activities associated with different phases are likely to be undertaken concurrently across the project development area. For example, early in the project's lifecycle production wells will likely be operating adjacent to activity associated with the establishment of additional production wells. Similarly, later in the project's lifecycle operation of major facilities will likely occur adjacent to activity associated with the decommissioning of nearby production wells.

Based upon Arrow's existing operations and strategic planning, the key traffic generating activities likely to be associated with the project are as follows:

- > Construction phase
 - Production well installation
 - Gathering infrastructure installation
 - Production facility construction
- > Operation phase
 - Production well operation and maintenance including well workovers
 - Gathering infrastructure operation and maintenance
 - Production facility operation and maintenance
- > Decommissioning phase
 - Production well decommissioning and rehabilitation
 - Gathering infrastructure decommissioning and rehabilitation
 - Production facility decommissioning and rehabilitation.

A detailed breakdown of the traffic generating potential of each project activity is summarised at Appendix B. It is anticipated that the majority of delivery types will be co-ordinated from two marshalling yards located in Dalby and Miles with materials transported from these locations to each of the project activity sites. As identified in Appendix B it is anticipated that some bulk materials such as quarry product and concrete will be transported direct from suppliers to project activity sites rather than via the marshalling yards to avoid inefficient double handling.

6.2 Project Traffic Generation

Table 6-1 provides a summary of the traffic expected to be generated by each project activity. Detailed descriptions of each phase and associated assumptions made are included at Appendix B.

For this assessment, the classification of light vehicles (LVs) includes sedans, wagons, vans, utilities, 4WDs and motorcycles. Buses have been classified as all vehicles larger than a light vehicle van which transport people. All LV and bus movements are associated with staff movements. All other vehicles have been classified as heavy vehicles (HVs).

The estimated traffic generation of each of the activities presented in Table 6-1 is generally higher than that assessed as part of the EIS RIA. The updated traffic generation has been developed by Arrow to present a worst case scenario. In addition, the estimates have been informed by logistics planning recently undertaken by Arrow for the various materials anticipated to be handled by the two marshalling yards.

Table 6-1 Summary of Traffic Generation Potential of Project Activities

		Authoritae	Exte	ernal Traffic Genera	tion
Activity	Quantity Activity Duration		HV Movements	Bus Movements	LV Movements
(m	ovements are pe		on Activities ation of construction	of each facility)	
Production Wells	6,500 wells	15 days	142	-	444
Gathering Infrastructure	6,500 sections	8 days	22	-	182
CGPFs	6 facilities	55 weeks	3,760	27,720	46,200
CGPF with Water Treatment Facility	2 facilities	60 weeks	4,380	30,240	50,400
FCFs	6 facilities	28 weeks	556	1,100	1,830
TWAF	6 facilities	4 weeks	8,186	-	-
(m			intenance Activities ch year of operation		
Production Wells	6,500 wells	15 years	12	-	48
Gathering Infrastructure	6,500 sections	15 years	-	-	-
CGPFs	6 facilities	18-31 years	624	-	7,800
CGPF with Water Treatment Facility	2 facilities	41 years	9,384	-	10,400
FCFs	6 facilities	12-34 years	20	-	104
TWAF	6 facilities	26-43 years	5,616	1024	27,302
(move			Rehabilitation Action of decommission		
Production Wells	6,500 wells	2 days	48	-	32
Gathering Infrastructure	6,500 sections	2 days	8	-	-
CGPFs	6 facilities	8 months	3,760	244	14,700
CGPF with Water Treatment Facility	2 facilities	8 months	4,280	720	43,008
FCFs	6 facilities	4 months	556	60	3,570
TWAF	6 facilities	3 months	8,186	-	3,734

The *Project Description* for the *Supplementary Report to the Surat Gas Project EIS* (Project Description) states that CGPFs, FCFs and Water Treatment Facilities are expected to be operational for approximately 25 years. However, for the purpose of this SREIS RIA, an 'operational activity range' has been identified to ensure that the respective facility is operational for the full life of all production wells in the adjacent drainage area. In some instances, the operational life of a facility in the SREIS RIA is greater than what is stated in the Project Description.

7 Strategic Traffic Modelling

7.1 Traffic Modelling Methodology

A strategic traffic model was developed to forecast the traffic demands likely to be associated with the project. This tool was used to inform categorisation of the magnitude of the project's potential impact in order to facilitate an informed assessment of the significance of the project's potential impacts.

The forecasting methodology adopted for this assessment utilises similar principles to that typically adopted for strategic modelling of urban areas. When developing an urban strategic model, the precise land parcels that will be developed during the assessed period are typically unknown. Instead, land with similar characteristics is grouped together such that reasonable predictions can be made about the level of activity likely to be generated in aggregate at the future design horizon. By aggregating the land parcels, it is possible to make reasonably accurate predictions about the level of development likely to occur and in turn the likely traffic generation of the aggregated land parcels at the future design year.

A similar situation exists for the Surat Gas Project. While Arrow has a reasonable understanding of the total extent of infrastructure likely to be developed across the project development area, the precise location for each component of project infrastructure is still to be finalised post EIS assessment and finalisation of detailed constraints analysis. It is known however that the production wells will have a relatively constant spacing and that all other project infrastructure will effectively service the wells. It is therefore possible to make fairly accurate predictions about the level of activity likely to be generated by the project across a broad area. The principals of this approach are consistent with that applied when strategically modelling urban areas.

The following methodology has been utilised to forecast future design horizon traffic volumes:

- > The infrastructure likely to be constructed, operated and decommissioned within each activity zone (i.e. well parcel or facility) was identified for each year of the project life based on the development schedule provided by Arrow
- > The traffic generation of each activity zone was forecast utilising the traffic generation rates identified in Section 6
- > The generated traffic from each activity zone was assigned to the external road network consistent with the origin/destination data presented in Appendix B. Traffic from each activity zone was loaded onto the external road network at a single point nearest the centroid of the activity zone using a representative centroid connector
- > Traffic volumes on each road link were identified for each year of the project.

Figure 7.1 illustrates the adopted representative locations of project infrastructure. The representative locations have a relatively high level of disaggregation, which facilitates reasonably accurate forecasts particularly on higher order road links where fewer route choice options exist. The adopted forecasting approach is appropriate to inform decisions in relation to the effectiveness of the planned management strategies and development of appropriate conditions.

7.2 Forecast Project Traffic Demands

The total transport task associated with the project represents the total number of vehicle kilometres likely to be travelled by traffic associated with the project on the State controlled road network, Council controlled road network and the access networks internal to private land over the full life of the project. The total transport task statistic provides a strategic overview of the extent of traffic activity potentially generated by the project over its life.

Table 7.1 summarises the total VKT estimated for the project life and Figure 7.1 summarises the profile of VKT across the project life. The project traffic demands for each year of the project for each assessed link are summarised on Figures C1 to C45 at Appendix C.

Table 7-1 Project Transport Task

Vehicle	Transport Task (VKT)
Light Vehicle	595 Million
Heavy Vehicle including Buses	513 Million
TOTAL	1,108 Million

Figure 7-1 VKT Across Assessed Road Network by Vehicle Type

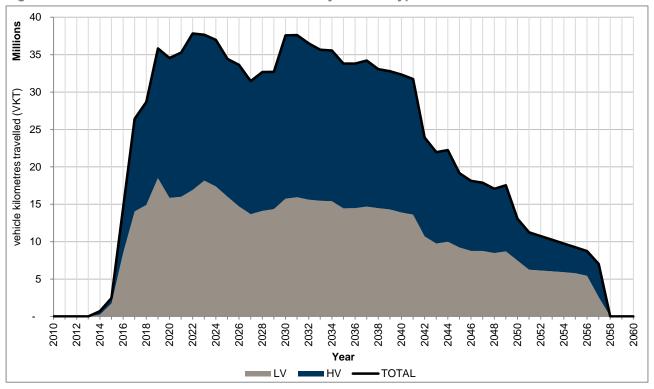


Table 7-1 indicates that the project is anticipated to generate approximately 1,108 Million VKT over the project life comprising 595 Million LV VKT and 513 Million HV VKT within the extents of the former Darling Downs Region. Figure 7-1 indicates that the project's annual VKT generation is anticipated to peak at 38 Million VKT during 2022.

Figure 7-2 summarises the VKT that is anticipated to occur on TMR's, Western Downs Regional Council's (WDRC), Goondiwindi Regional Council's (GRC) and Toowoomba Regional Council's (TRC) road networks as well as on private access roads.

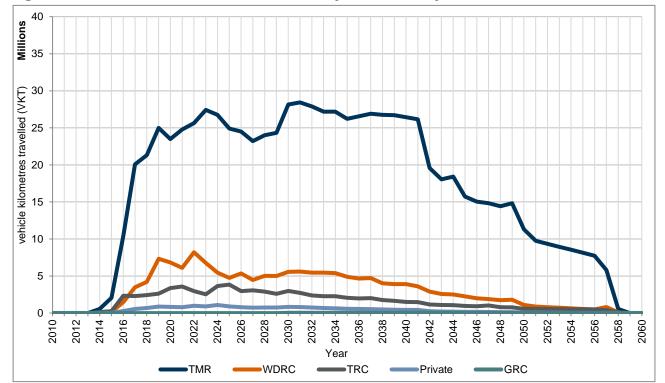


Figure 7-2 VKT Across Assessed Road Network by Road Authority

The results presented in Figure 7-2 indicate that approximately:

- > 854 Million VKT or 77% of the total project travel is anticipated to occur on TMR's network
- > 155 Million VKT or 14% of the total project travel is anticipated to occur on WDRC's network
- > 78 Million VKT or 7% of the total project travel is anticipated to occur on TRC's network
- > 20 Million VKT or 2% of the total project travel is anticipated to occur on private access roads
- > 0.7 Million VKT or less than 1% of the total project travel is anticipated to occur on GRC's road network.

Figure 7-3 provides a summary of the project generated VKT on TMR's road network over the project life by vehicle type (i.e. HV and LV) within the extents of TMR's former Darling Downs Region.

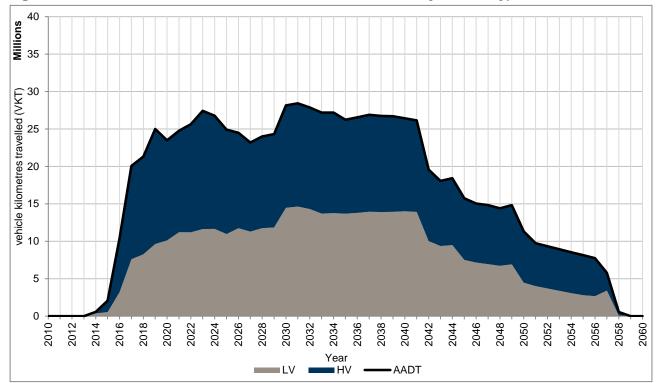


Figure 7-3 VKT on TMR Roads Across Assessed Road Network by Vehicle Type

Figure 7-3 indicates that around 2031 the project is anticipated to generate 28 Million VKT on TMR's road network comprising approximately 15 Million LV VKT and 14 Million HV VKT. To provide context to this travel forecast, the total VKT that occurred on TMR's former Darling Downs Region road network during 2011 has been estimated based on data supplied by the district. This data indicates that in 2011 approximately 1,892 Million VKT occurred across the district's road network. Of this approximately 376 Million VKT was associated with HV travel while the remaining 1,516 Million VKT was associated with LV travel.

Figure 7-4 summarises the project's forecast VKT generation on TMR's road network for each project year as a percentage of the travel which occurred on the district's road network in 2011 by vehicle class. This provides an indication of the broad proportional impact of travel associated with the project on the district's road network by vehicle class.

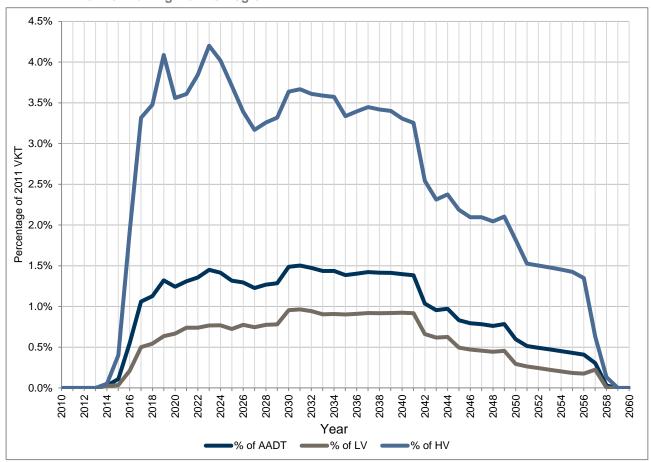


Figure 7-4 VKT on TMR Roads Across Assessed Road Network as Percentage of 2011 VKT in former Darling Downs Region

Figure 7-4 indicates that at its peak (around 2031) the project is anticipated to increase the level of total travel occurring on TMR's former Darling Downs District road network by approximately 1.5% beyond the level of total travel that occurred on the district's road network in 2011. Figure 7-4 also indicates that the extent of HV travel generated by the project across the district is likely to peak in 2023 at approximately 4.2% of the HV travel that occurred on the district's road network in 2011.

These findings are very important as they indicate that at the district level the total travel generated by the project is likely to be equal to or less than 1.5% of the total travel currently (2011) occurring on the district's road network. Furthermore, even at its peak the project is anticipated to increase the extent of HV travel occurring on the district's road network by less than 4.5% of existing (2011) levels.

With regards to the spatial traffic volumes, Figure 7.2 summarises the transport task performed by each road link for the full life of the Surat Gas Project. Figure 7-3 indicates the AADT generated by the project on each link on average for the full project life. Figure 7-4 summarises the highest AADT increase anticipated to be experienced in any year of the project on each link.

The implications of the AADTs shown on Figures 7-2 to 7-4 are discussed in Section 10 of the report with response to the magnitude and therefore significance of impact.

7.3 Comparison to EIS Traffic Demands

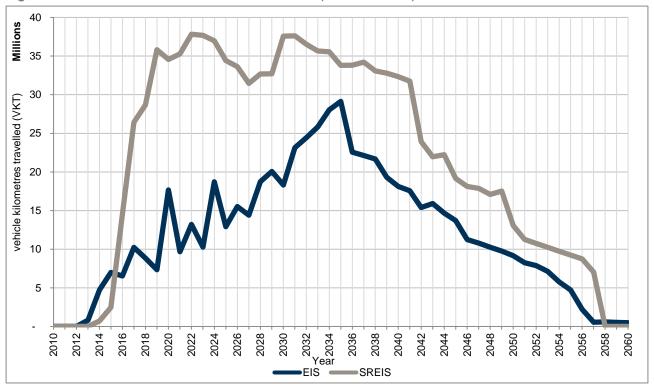

7.3.1 Vehicle Kilometres Travelled

Table 7-2 compares the total project VKT estimated for the project life during the preparation of the EIS RIA with that estimated as part of the SREIS RIA. Figure 7-5 illustrates the profile of VKT across the project life.

Table 7-2 Project Transport Task - VKT (EIS vs. SREIS)

Vehicle	EIS Transport Task (VKT)	SREIS Transport Task (VKT)
Light Vehicle	224 million	595 million
Heavy Vehicle including Buses	392 million	513 million
TOTAL	616 million	1,108 million

Figure 7-5 VKT Across Assessed Road Network (EIS vs. SREIS)

The results presented above suggest that the estimated total project VKT has increased by approximately 492 Million VKT compared to the EIS (i.e. 616 Million VKT to 1,108 Million VKT). In addition, the anticipated peak annual VKT has increased by approximately 9 Million VKT compared to the EIS (i.e. 29 Million VKT to 38 Million VKT). The total transport task statistic provides a strategic overview of the extent of traffic activity generated by the project over its life. Whilst the results indicate an increase in the estimated total project VKT compared to the EIS, the net increase in daily traffic volumes at a road link level is typically relatively minor.

The estimated increase in total project VKT is fundamentally a result of recent changes in project planning from that presented in the EIS and a refined understanding of the material requirements for of project. At a high level, the following changes in project planning have influenced the total project VKT estimates:

- > Changes to the intensity, duration and sequencing of the project
- > Reduction in the number of water treatment facilities and marshalling yards
- > Increased aggregate requirements etc.

As stated previously, the assessed schedule has been formulated to present a worse case development scenario from a traffic engineering perspective. It assumes rapid development of the production wells and facilities resulting in the most intense forecast of peak traffic demands. Therefore, the revised VKT estimates for the project are considered conservative and should provide road authorities greater confidence that the traffic impacts that ultimately eventuate are very unlikely to exceed that reported herein.

7.3.2 Strategic Routes

The recent changes in project planning have resulted in a shift in project traffic demands from the Gore Highway to Toowoomba-Cecil Plains Road. The EIS RIA, envisaged a depot in Millmerran as well as at Dalby and Miles. It was assumed that all materials would be transported from these locations to project activity sites. As a result, all trips between Toowoomba and Cecil Plains utilised the Gore Highway for movement to the depot in Millmerran and then along Millmerran-Cecil Plains Road to Cecil Plains.

In the SREIS RIA, it is anticipated that the majority of deliveries will be co-ordinated from two marshalling yards located in Dalby and Miles with materials transported from these locations to each of the project activity sites. It is anticipated that some bulk materials such as quarry product and concrete will be transported direct from suppliers to project activity sites rather than via the marshalling yards to avoid double handling. As a result of the project changes there is a desire line between Toowoomba and Cecil Plains via Toowoomba-Cecil Plains Road. The traffic modelling indicates that peak project traffic demands using Toowoomba-Cecil Plains Road will be in the order of 61 vehicles per day (vpd).

7.3.3 Annual Average Daily Traffic

Table 7-3 compares the peak average and peak maximum AADT on an individual link for the project life estimated during the preparation of the EIS RIA with that estimated as part of the SREIS RIA.

Table 7-3 Peak Project AADT Comparison (EIS vs. SREIS)

AADT for an Individual Link	EIS	SREIS
Peak Average AADT	104	323
Peak Maximum AADT	330	697

Figure 7-6 illustrates the percentile range of maximum project AADT on individual links for the life of the project. In summary, Figure 7-6 highlights that approximately:

- > 75% of links impacted by the project will have a maximum project AADT less than 130 vpd
- > 85% of links impacted by the project will have a maximum project AADT less than 215 vpd
- > 95% of links impacted by the project will have a maximum project AADT less than 315 vpd
- > 99% of links impacted by the project will have a maximum project AADT less than 375 vpd.

Figure 7-6 Percentile of Maximum Project AADT on Individual Links (SREIS)

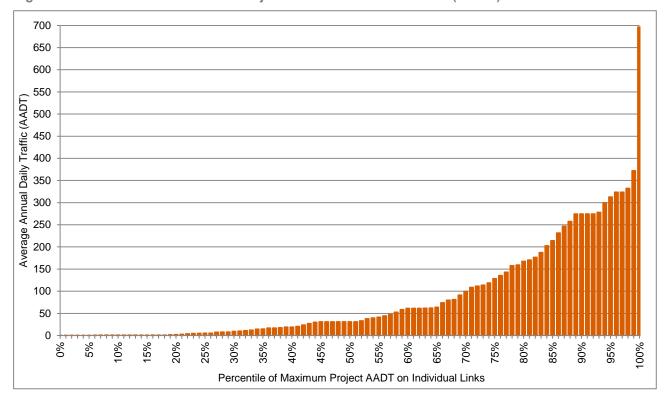
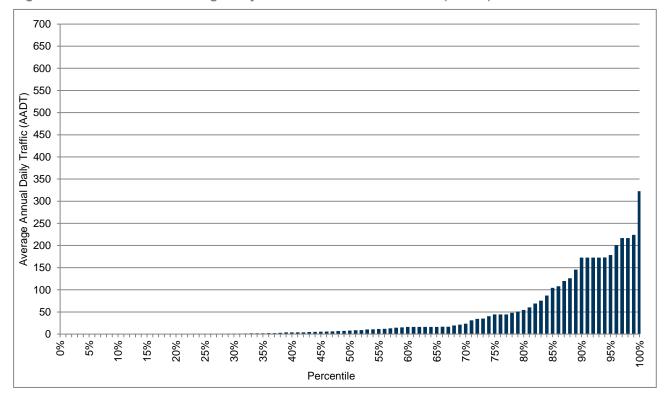
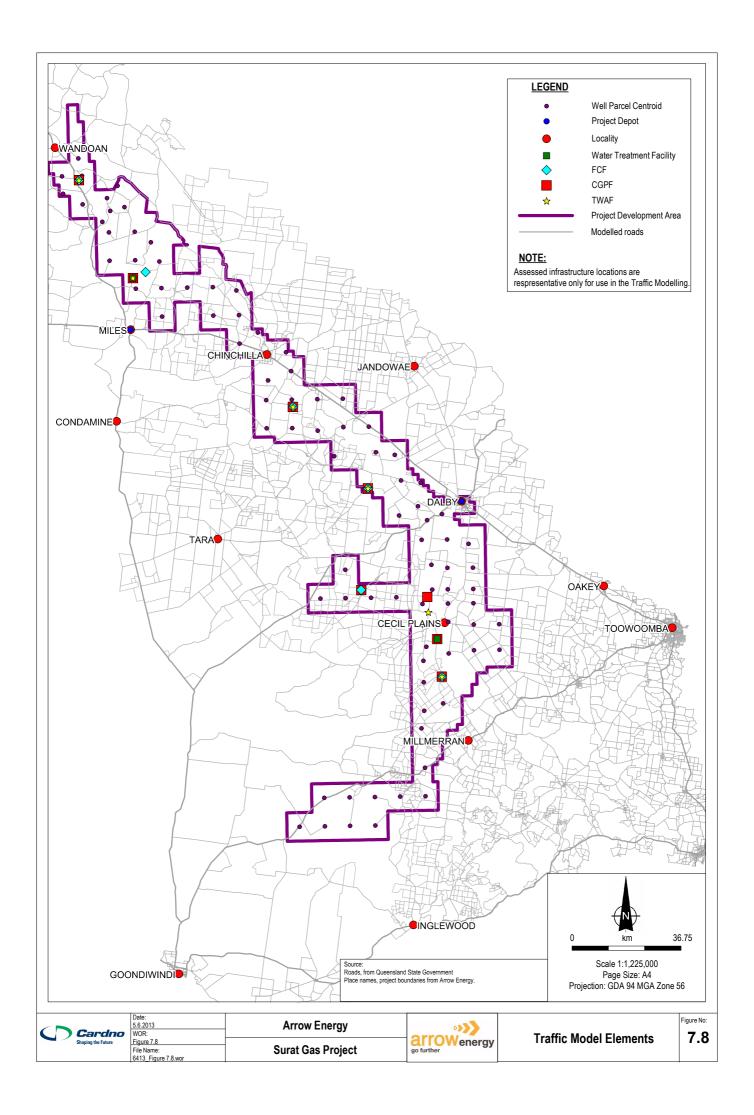
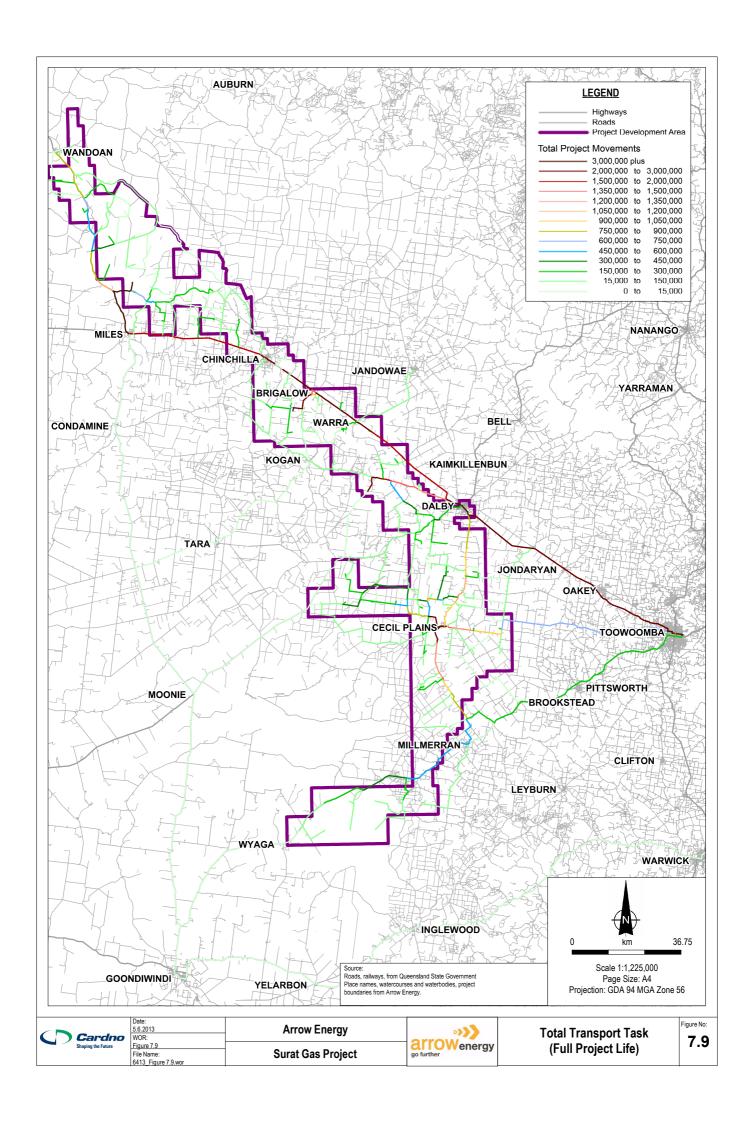
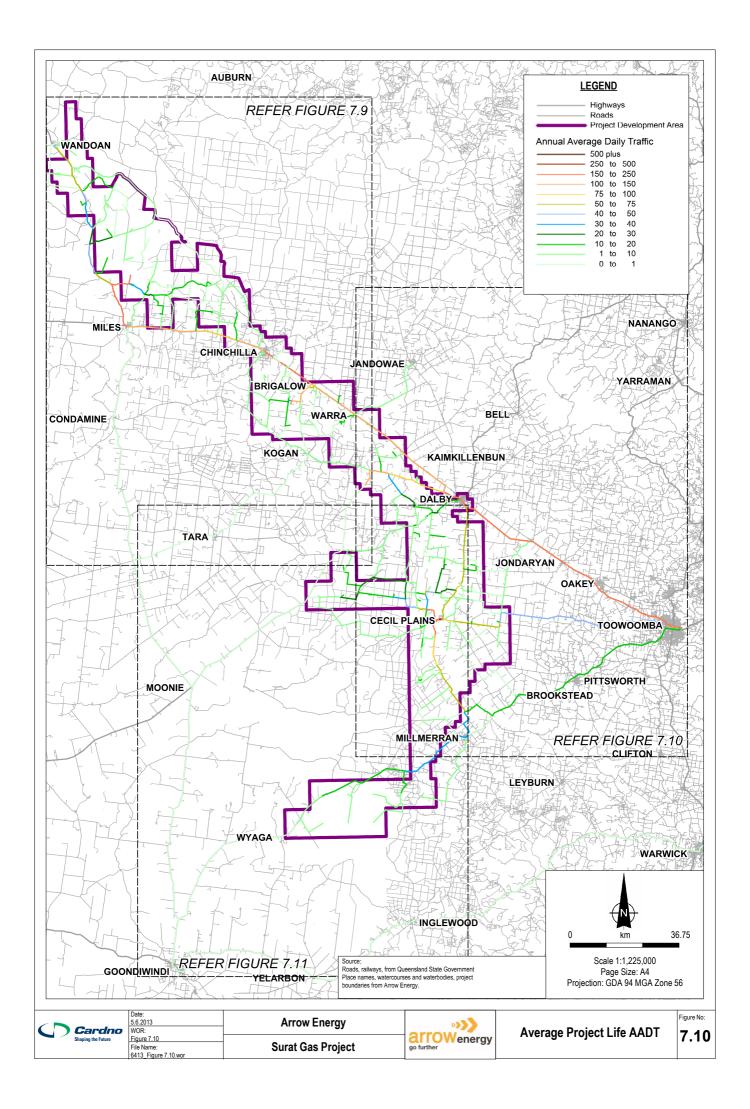
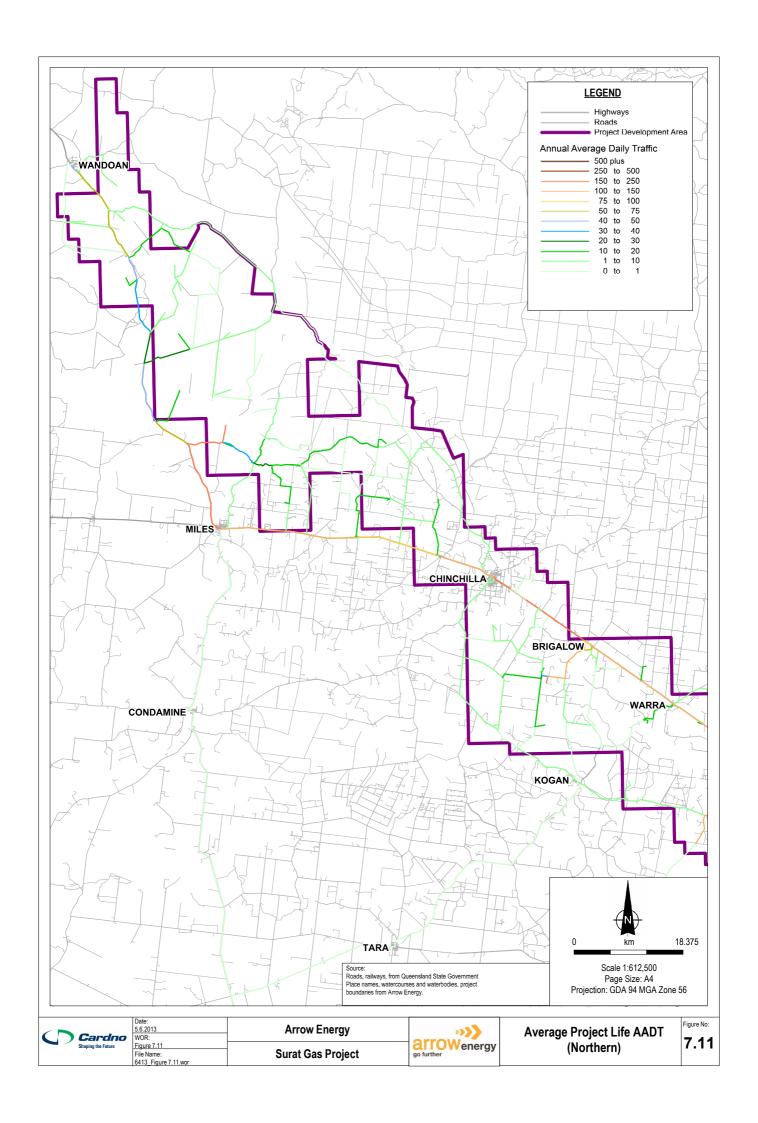



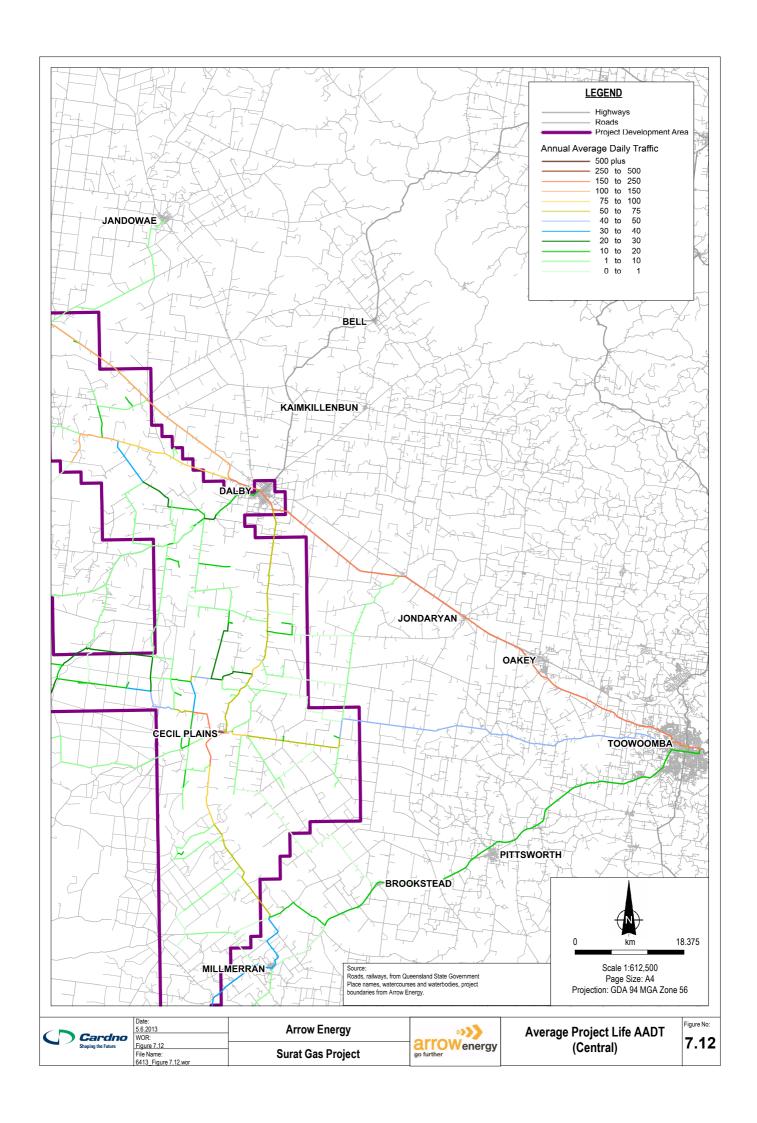
Figure 7-7 illustrates the percentile range of average project AADT on individual links for the life of the project. In summary, Figure 7-7 highlights that approximately:

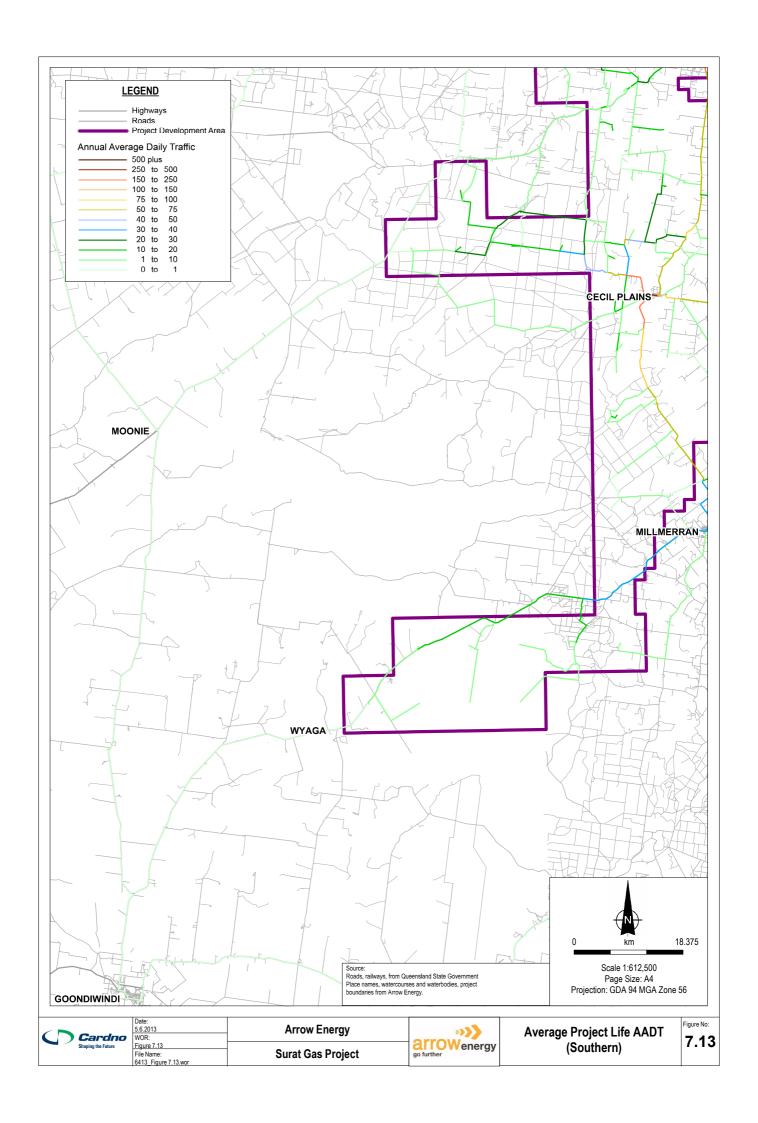

- > 75% of links impacted by the project will have an average project AADT less than 45 vpd
- > 85% of links impacted by the project will have an average project AADT less than 105 vpd
- > 95% of links impacted by the project will have an average project AADT less than 180 vpd
- > 99% of links impacted by the project will have an average project AADT less than 225 vpd.

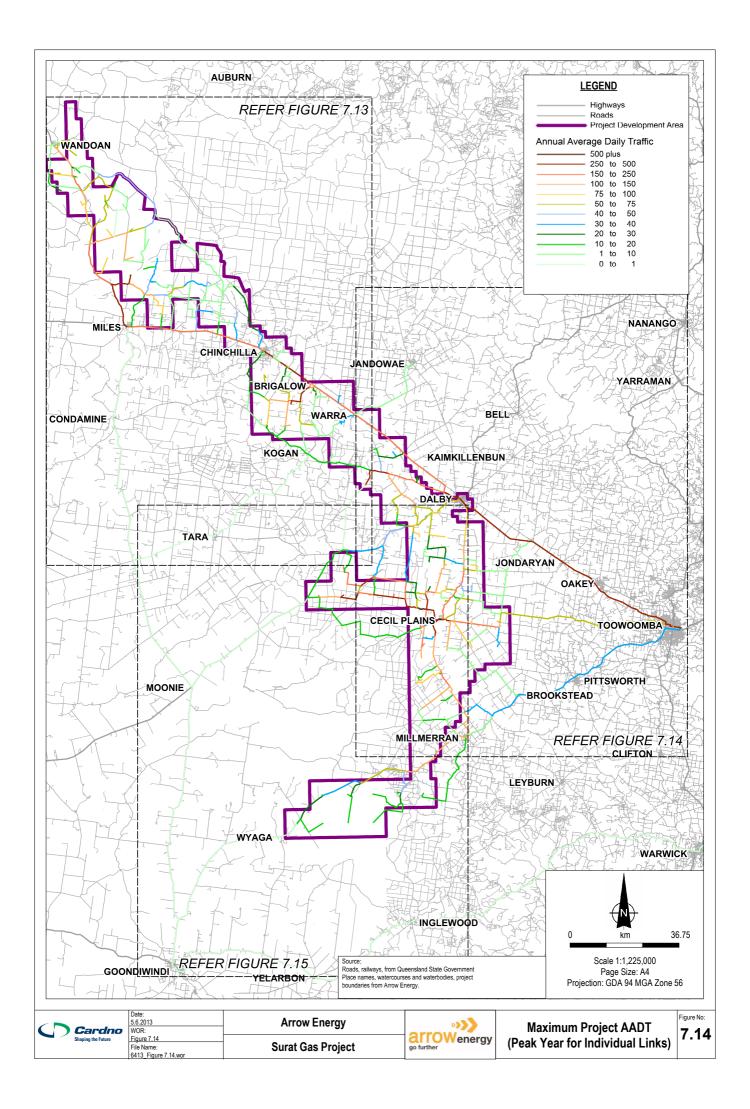

Figure 7-7 Percentile of Average Project AADT on Individual Links (SREIS)

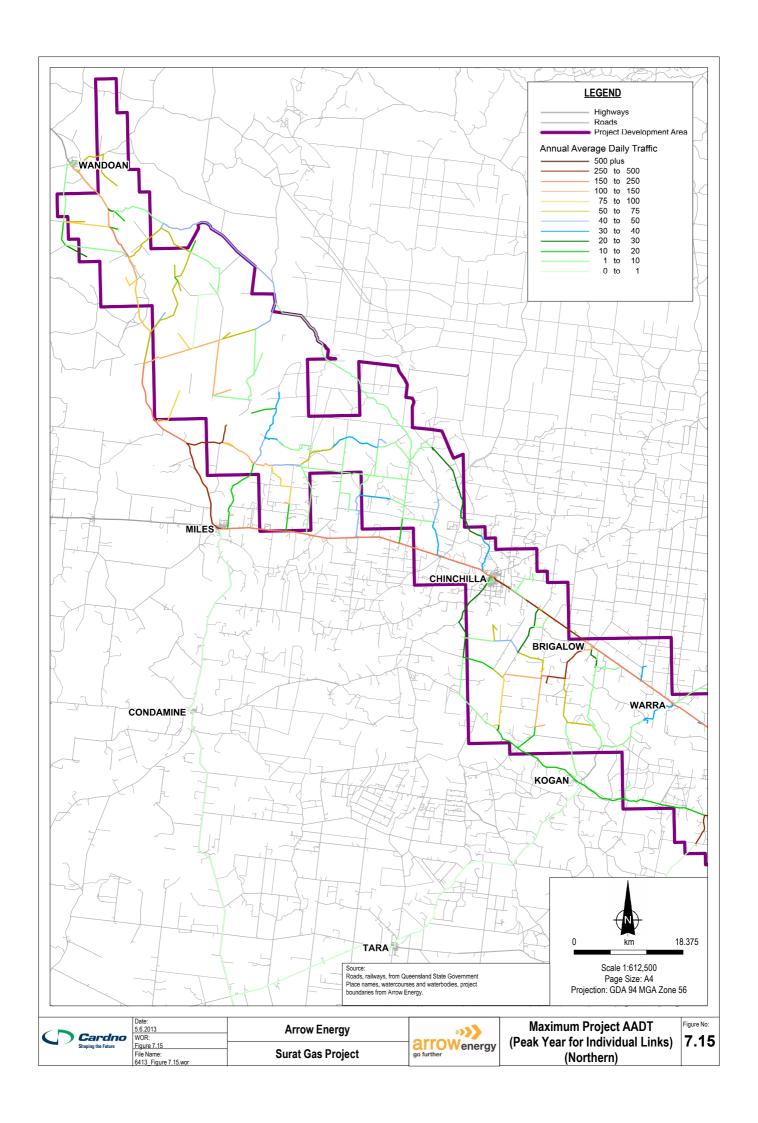


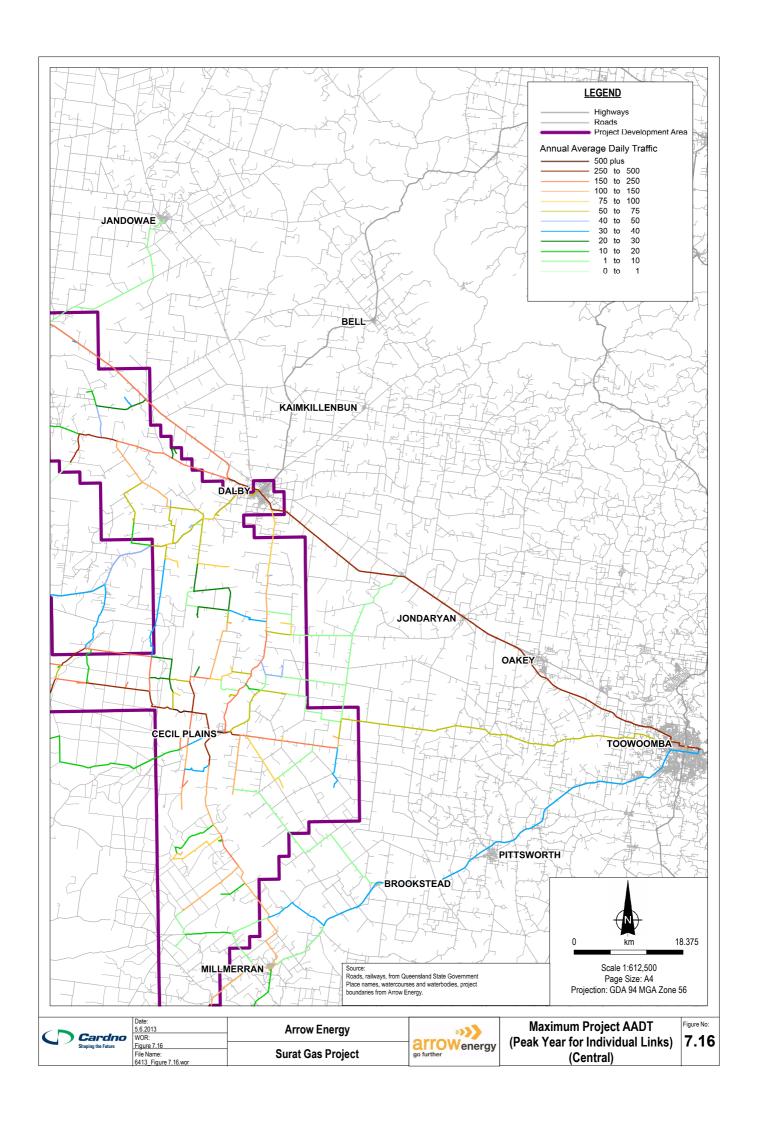

7.4 Forecast Pedestrian and Cyclist Volumes

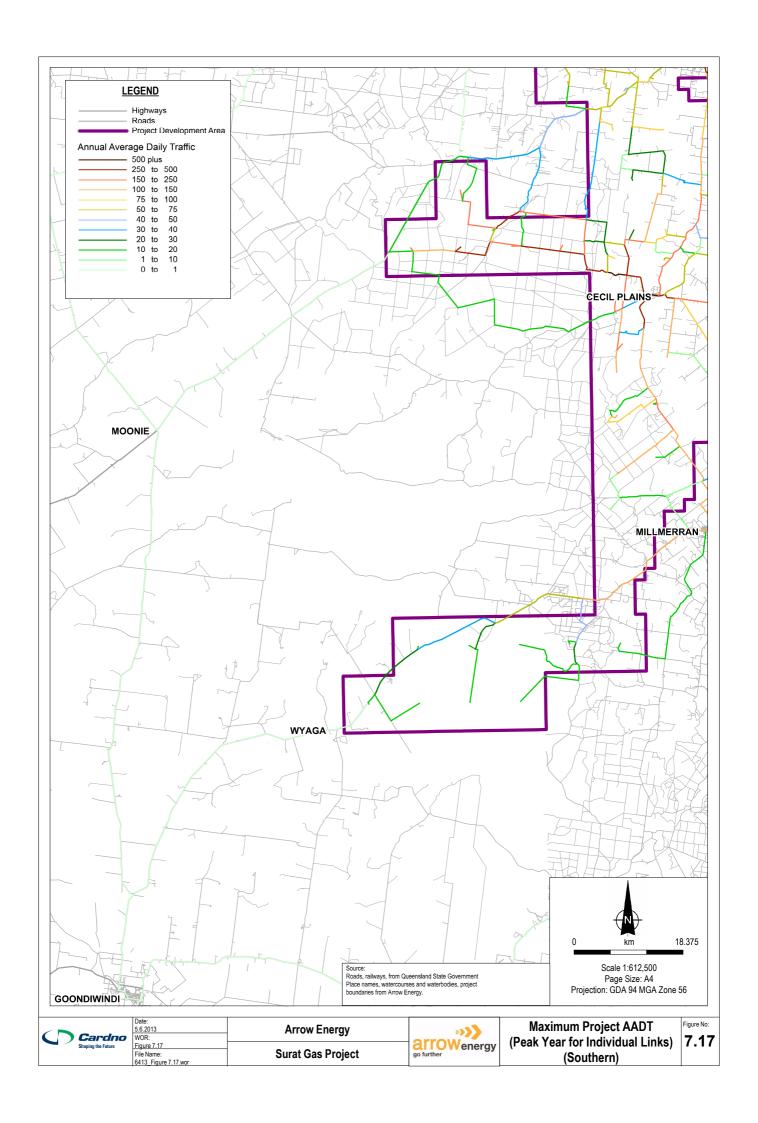

The Surat Gas Project is not anticipated to increase existing pedestrian or cycle demands on a broad scale and therefore modelling of pedestrian or cycle demands associated with the project has not been undertaken.











8 Literature Review

The literature review documented in the EIS report was reviewed for currency given the passage of time since the time of preparation. While the information included within the section remains current, some changes have been made to the guidelines and standards in which the information is contained. This is primarily due to the continuing effort for the adoption of Austroads as a national benchmark to consolidate varying standards across Australia and New Zealand. Specific instances of updates are as follows:

- > Rural Road Design: A Guide to the Geometric Design of Rural Roads is now also contained within Austroads Guide to Road Design Part 3: Geometric Design
- > Guide to Traffic Engineering Practice Part 2: Roadway Capacity is now included in Guide to Traffic Management Part 3: Traffic Studies and Analysis
- > Elements of TMR's *Road Planning Design Manual* are now reproduced in the Austroads *Guide to Road Design* series.

It is reiterated that the engineering guidance contained within the original report remains current and still provides best practise standards towards road standards to be adopted for the Surat Gas Project.

8.1 Intersection Thresholds

8.1.1 Performance Criteria

The performance of an intersection is typically analysed using SIDRA Intersection 5.1 (SIDRA) for assessments conducted in Queensland. SIDRA is an industry recognised analysis tool that estimates the capacity and performance of intersections based on input parameters, including geometry and traffic volumes, and provides estimates of an intersection's Degree of Saturation (DOS), queues and delays. Simplistically, DOS is a measure of the proportion of traffic entering an intersection relative to the intersection's capacity.

Table 8-1 provides the TMR defined DOS thresholds for intersections.

Table 8-1 TMR Thresholds for Intersection Performance

Level of Service Description	DOS Threshold
Signalised intersections	less than or equal to 0.90
Roundabouts	less than or equal to 0.85
Priority controlled intersections	less than or equal to 0.80

Source: TMR Guidelines for Assessment of Road Impacts of Development

The guideline notes that a DOS exceeding the values indicated in Table 8-1 indicates that an intersection is nearing its practical capacity and upgrade works may be required. Above these threshold values, users of the intersection are likely to experience rapidly increasing delays and queuing.

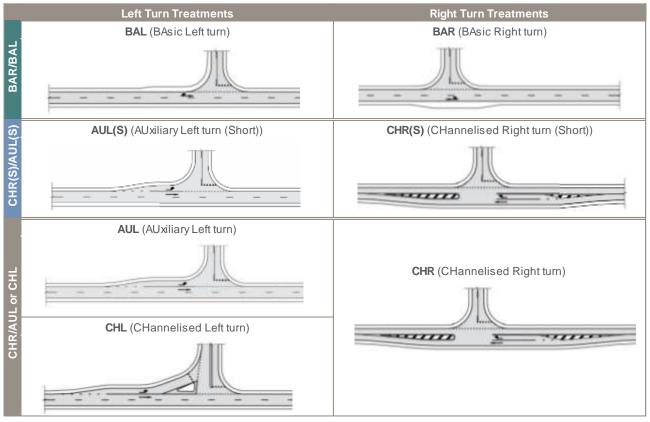
Importantly, it is noted that DOS is not the only performance indicator and that other measures such as critical delay should also be considered when assessing the performance of an intersection. Other authorities such as the New South Wales (NSW) Roads and Maritime Services (RMS) recommend the use of the critical movement delay for assessing the performance of priority-controlled intersections.

The RMS *Guide to Traffic Generating Developments* states that the average delay statistic for the critical movement provides a better indication of intersection performance and safety for priority-controlled intersections than DOS. A summary of the delay thresholds recommended by the RMS is provided in Table 8-2. Although these thresholds are not documented within Queensland guidelines, they are still considered to provide another informative performance indicator and were therefore considered for the SREIS RIA.

Table 8-2 RMS Level of Service (LOS) Criteria for Priority Controlled Intersections

LOS	Level of Service Description	Critical Delay per Vehicle (sec/veh)	
Α	Good operation	less than 14 sec	
В	Acceptable delays and spare capacity	15 to 28 sec	
С	Satisfactory	29 to 42 sec	
D	Near capacity	43 to 56 sec	
E	At capacity, requires other control mode	57 to 70 sec	

Source: RMS Guide to Traffic Generating Developments

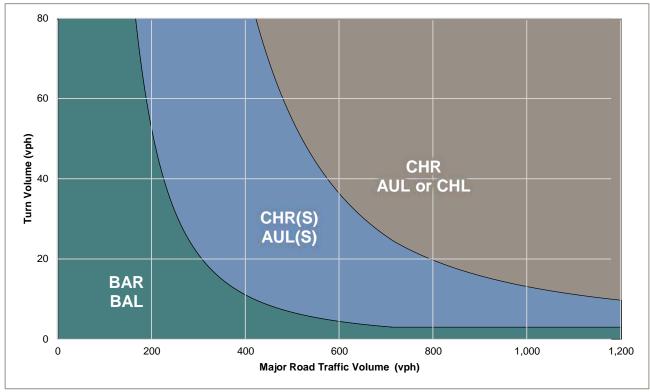

8.1.2 Safety Criteria

While DOS and critical delay measurements provide an indication on the operational performance of an intersection, the Austroads turn warrants for turn treatments offers an indication of which turn treatments will likely provide an appropriate level of safety. There are generally three types of turn treatments available at intersections, including:

- > Basic turn treatment
- > Auxiliary turn treatment
- > Channelised turn treatment.

The available left and right turn treatments are illustrated on Figure 8-1.

Figure 8-1 Intersection Turn Treatments


The Austroads turn warrants provide guidance on where deceleration lanes and turning lanes should be used based on traffic volumes. The warrants were developed by Arndt, Troutbeck, Handley & Slattery (2006) and were produced by identifying the location at which the benefits of providing a higher-level treatment (the reduction in estimated accident costs) are equal to the additional construction costs associated with the treatment. The benefits and costs of a higher-level treatment were compared to the base case (minimum turn treatments) to develop the curves demonstrated on Figures 8-2 and 8-3. The turn treatment acronyms (i.e. BAL, BAR etc.) and colours in the Figures 8-2 and 8-3 directly relate to the turn treatments illustrated on Figure 8-1 above.

80 60 Turn Volume (vph) CHR AUL or CHL CHR(S) 20 AUL(S) **BAR BAL** 0 0 200 400 600 800 1,000 1,200 Major Road Traffic Volume (vph)

Figure 8-2 Turn Warrants for Higher Speed Rural Roads (>= 100km/h)

vph = vehicles per hour

vph = vehicles per hour

8.2 Sight Distance

Sight distance requirements are outlined in Austroads *Guide to Road Design Part 4A: Unsignalised Intersections* which require three types of sight distance to be provided at intersections:

- > Approach Sight Distance (ASD): is the minimum sight distance which must be available on the minor road approach to ensure that drivers are aware of the presence of an intersection. Is also desirable on major road approaches so that drivers can see the pavement and markings within the intersection
- > Safe Intersection Sight Distance (SISD): provides sufficient distance for a driver of a vehicle on the major road to observe a vehicle on a minor road approach moving into a collision situation
- > Minimum Gap Sight Distance (MGSD): relates to the distances corresponding to the critical acceptance gap that drivers are prepared to accept, for both turning out from the minor road, and turning in from the major road.

9 Management Strategies

9.1 Management Strategies

Table 9.1 to Table 9.8 summarise the management strategies developed to manage the project's potential impacts on the road network. The planned management strategies establish generic responses to common situations which are likely to occur throughout the life of the project. For example Table 9.2 identifies that typically it is expected that Arrow will need to construct sealed roads to major facilities such as CGPF's. It is identified that the management strategies are typical responses only and that consideration of site specific constraints will ultimately need to occur for each location to ensure appropriate engineering outcomes. Nevertheless the management strategies establish the framework upon which future infrastructure agreements with road authorities will ultimately be based.

The management strategies presented herein are consistent with the strategies presented in the EIS RIA. However, two additional management strategies have been identified within the SREIS to provide further clarity to the strategy presented within the EIS. These include:

- > Undertake a FFU inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed
- > Enter into agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities.

The abovementioned management strategies are consistent with best practice principals and are therefore considered appropriate to manage the project's potential impacts on the road network.

The effectiveness of the planned management strategies is assessed in Section 10 and Section 11.

 Table 9-1
 Efficiency: Sealed Roads Management Strategies

Facility	All Road Classifications
CGPFs, CGPFs	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed
with Water	 Road may require widening to two lane seal width with sealed shoulders and centre and edge line marking
Treatment Facilities,	 Contribution may be required towards more frequent pavement maintenance as a result of increased heavy vehicle movements
TWAFs	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed
FCFs	 Turn lanes may be required at field compression facility access points
	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
Well Sites and	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed
Gathering	 Temporary road management measures to be implemented, for example temporary road signs advising of reduced speed limits
Infrastructure	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-2 Efficiency: Unsealed Roads Management Strategies

Facility	All Road Classifications (Excluding Highways)
CGPFs, CGPFs and Water Treatment Facilities, TWAFs	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed Typically preferred strategy is sealing of unsealed roads however well maintained gravelled road may be adequate in certain instances if mutual agreement is reached with Council Likely sealed form would be two lane seal width with sealed shoulders and centre and edge line marking Any required works to be identified in ongoing Road Use Management Plans prepared to support the project Enter into agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities
FCFs	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed Temporary traffic management to be implemented, for example road signs stipulating reduced speed limits Unsealed road surface may require more frequent maintenance as a result of increased traffic, particularly during the construction and rehabilitation Any required works to be identified in ongoing Road Use Management Plans prepared to support the project Enter into agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities
Well Sites and Gathering Infrastructure	 Undertake fit for use inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed Temporary traffic management to be implemented, for example road signs stipulating reduced speed limits Unsealed road surface may require more frequent maintenance as a result of increased traffic, particularly during the construction and rehabilitation Any required works to be identified in ongoing Road Use Management Plans prepared to support the project Enter into agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities

Table 9-3 S	Safetv:	Access	Roads	Management	Strategies
--------------------	---------	--------	-------	------------	------------

Facility	Highway	Regional Connection Road	Rural Connecting Road	Rural Access Road
CGPFs, CGPFs and Water Treatment Facilities, TWAFs	 Turn lanes and acceleration lanes may be required at facility accesses Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Turn lanes and acceleration lanes may be required at facility accesses Upgrades at nearest highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Turn lanes and acceleration lanes may be required at facility accesses Upgrades at nearest regional connecting road or highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Upgrades at nearest rural connecting road or highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
FCFs	 Turn lanes and acceleration lanes may be required at access Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Turn lanes and acceleration lanes may be required at accesses Upgrades at nearest highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Turn lanes and acceleration lanes may be required at accesses Upgrades at nearest regional connecting road or highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Upgrades at nearest rural connecting road or highway intersection may be necessary (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
Well Sites and Gathering Infrastructure	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Upgrades at nearest highway intersection may be necessary during construction phase (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Upgrades at nearest regional connecting road or highway intersection may be necessary during construction phase (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project. 	 Ensure appropriate sight distance at access driveway. Upgrades at nearest connecting road or highway intersection may be necessary during construction phase (turn lanes, signage, line marking, etc.) Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-4	Safety:	Bridges	Management	Strategies

Facility	All Road Classifications
CGPFs, CGPFs and Water Treatment Facilities, TWAFs	 Facilities may require frequent and long-term use of heavy vehicles, it is recommended that routes avoid substandard bridges Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
FCFs	 Alternative routes may need to be investigated to avoid use of sub standard bridges Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
Well Sites and Gathering Infrastructure	 Alternative routes may need to be investigated to avoid use of sub standard bridges Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-5 Safety: School Bus Routes Management Strategies

Facility	All Road Classifications
CGPFs, CGPFs and Water Treatment Facilities, FCFs	 High volumes of heavy vehicles may be associated with the facilities and therefore use of school bus routes should be avoided if possible, or carefully managed to avoid conflicts
	 Consideration should be given to limiting facility traffic on school bus routes during pick-up and set-down times on school days, alternatively appropriate school bus infrastructure could be installed
	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
TWAFs	 High volumes of vehicles are associated with the temporary workers accommodation facility therefore use of school bus routes needs to be avoided if possible, or carefully managed to avoid conflicts
	 Consideration should be given to limiting camp traffic on school bus routes during pick-up and set-down times on school days
	 Workers residing at temporary workers accommodation facility should be made aware of school bus routes as well as typical pick-up and drop-off times in the vicinity of the temporary workers accommodation facility
	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
Well Sites and Gathering Infrastructure	Consideration should be given to limiting project traffic on school bus routes during pick-up and set-down times on school days
	 Workers should also be made aware of school bus routes as well as typical pick-up and drop-off times in the vicinity of the work sites
	 Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-6 Safety: Rail Crossings Management Strategies

Facility	Al Road Classifications
CGPFs, CGPFs and Water Treatment Facilities, TWAFs	 Increase in traffic associated with the project is likely to increase vehicle exposure at rail crossings Thresholds assessment to be undertaken to determine if upgrading of the rail crossing is warranted Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.
Well Sites and Gathering Infrastructure	 Increase in traffic associated with the project is likely to increase vehicle exposure at rail crossings Thresholds assessment to be undertaken to determine if upgrading of the rail crossing is warranted. Given the short-term duration of the impact, temporary traffic control may be an alternative mitigation measure Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-7 Safety: Drive Fatigue Management Strategies

Facility	All Road Classifications
CGPFs, CGPFs with Water Treatment Facilities, TWAFs, Well Sites and Gathering Infrastructure	 Fatigue management measures should be introduced and enforced for all workers Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

Table 9-8 Amenity: Stock Routes Management Strategies

Facility	All Road Classifications
CGPFs, CGPFs and Water	 Where there are to be permanent disruptions to the stock route network, DERM requires realignment or replacement of corridors of similar width and suitable country type to allow for the uninterrupted flow of travelling stock
Treatment Facilities, TWAFs, Well Sites and Gathering Infrastructure	 The stock route network (all or part) disturbed or affected by the proposed works should be rehabilitated upon completion of the project. Where revegetation is required, native vegetation, including pastures, must be used to return the area to its natural state Any required works to be identified in ongoing Road Use Management Plans prepared to support the project.

[This page has been left intentionally blank]

Environmental Values Assessment 10

Assessment Approach Overview 10.1

The environmental values assessment approach establishes the level of significance of the project's potential impacts through consideration of the sensitivity of each environmental value and the magnitude of the project's potential impact upon the value. To enable the effectiveness of the mitigation strategies to be assessed, the level of significance of the potential impacts has been considered both pre and post implementation of the planned mitigation strategies.

The significance of impacts are a function of the sensitivity of the values themselves to change and the magnitude of the changes experienced. Table 10.1 summarises the significance of impact given the sensitivity of an environmental value and the magnitude of impact experienced. Further details in relation to the adopted environmental values assessment approach is provided in Section 6 of the EIS RIA readers should refer to this material if they require further details.

Sensitivity of Environmental Value High **Moderate** Low Magnitude of High Major High Moderate Impact Moderate High Moderate Low

Table 10-1 Assessment of Significance of Impacts

Low

Consistent with other technical studies undertaken to support the SREIS the following significance of impact definitions have been utilised when applying the environmental values assessment approach:

Moderate

Major Impact: Occurs when impacts will potentially cause irreversible or widespread harm to an environmental value

Low

Negligible

- High Impact: Occurs when the proposed activities are likely to exacerbate threatening processes affecting the intrinsic characteristics and structural elements of the environmental
- Moderate Impact: Occurs where, although reasonably resilient to change, the environmental value would be further degraded due to the scale of the impacts or its susceptibility to further
- Low Impact: Occurs where an environmental value is of local importance and temporary and transient changes will not adversely affect its viability provided standard environmental controls are implemented
- Negligible Impact: A degraded (low sensitivity) environmental value exposed to minor changes (low magnitude impact) will not result in any noticeable change in its intrinsic value and hence the proposed activities will have negligible impact.

10.2 **Adopted Magnitude of Impact Thresholds**

For the SREIS RIA environmental values assessment the following magnitude of impact definitions have been adopted.

- High Magnitude: greater than 1,000 AADT increase
- Moderate Magnitude: 251 to 1,000 AADT increase
- Low Magnitude: 1 to 250 AADT increase.

10.3 Adopted Sensitivity of Environmental Value Thresholds

The road environmental values to be protected were described in detail in Section 6 of the EIS RIA. For brevity, the content previously presented in the EIS RIA has not been reproduced in detail herein.

Instead Table 10-2 and Table 10-3 have been reproduced within the SREIS RIA as a quick reference. These tables summarise the adopted environmental values and their sensitivities both pre and post implementation of the planned management strategies respectively.

Table 10-2 Sensitivity Values Pre-Management Strategies Implementation

			Valu	ie	
	Characteristic	Highway	Regional Connecting Road	Rural Connecting Road	Rural Access Road
Description	Function	A high order road of a high standard facilitating connectivity between regional centres	A high order road of a high standard facilitating connectivity between townships	Lower order road facilitating connectivity between higher order roads	Low order road predominately facilitating access to local uses
		Т	ypical Observations		
5	Volumes	1000+ vehicles	300+ vehicles	50+ vehicles	1-100 vehicles
Efficiency	Pavement	Sealed	Sealed	Sealed/unsealed	Unsealed
# 	Standard of intersection control	High order	Varies	Low order	Low order
Sen	sitivity of Efficiency	Low	Moderate	High	High
	Bridges	Common	Common	Uncommon	Uncommon
	Cattle grids	Uncommon	Uncommon	Common	Common
	Standard of rail crossing control	Active	Passive	Passive	Passive
Safety	School bus route presence	Present	Present	Present	Present
	Composition of traffic	High proportion heavy vehicles	Moderate proportion of heavy vehicles	Low number of heavy vehicles	Low number of heavy vehicles
	Driver fatigue controls	Present	Uncommon	Uncommon	Uncommon
Se	ensitivity of Safety	Low	Moderate	High	High
	Stock route co- location	Present	Present	Present	Present
enity	Sensitivity of adjacent land uses	Low	Moderate	Moderate	Moderate
Ame	Potential for dust nuisance issues	Low	Low	Potential	Potential
	Potential for light glare issues	Low	Low	Potential	Potential
Ser	nsitivity of Amenity	Low	Moderate	High	High

Table 10-3 Sensitivity Values Post-Management Strategies Implementation

			Valu	ıe	
	Characteristic	Highway	Regional Connecting Road	Rural Connecting Road	Rural Access Road
Description	Function	A high order road of a high standard facilitating linkage between regional centres	A high order road of a high standard facilitating linkage between townships	Lower order road providing links between higher order roads	Low order road providing access to local uses
		Т	ypical Observations		
	Volumes	1000+ vehicles	300+ vehicles	50+ vehicles	1-100 vehicles
Efficiency	Pavement	Sealed with improvements	Sealed with improvements	Sealed with improvements	Sealed with improvements
<u> </u>	Standard of intersection control	High order	High order	Low order with improvements	Low order with improvements
Sens	sitivity of Efficiency	Low	Low	Moderate	Moderate
	Bridges	Frequent and high standard	Frequent and high standard	Infrequent and high standard	Infrequent and some works
	Cattle grids	Uncommon	Uncommon	Frequent and higher standard	Frequent and higher standard
	Standard of rail crossing control	Active	Investigate exposure threshold	Investigate exposure threshold	Investigate exposure threshold
Safety	School bus route presence	Present with improved awareness	Present with improved awareness	Present with improved awareness	Present with improved awareness
	Composition of traffic	High proportion of heavy vehicles	Moderate proportion of heavy vehicles	Higher number of heavy vehicles	Higher number of heavy vehicles
	Driver fatigue controls	Present plus driver fatigue management plan	Uncommon plus driver fatigue management plan	Uncommon plus driver fatigue management plan	Uncommon plus driver fatigue management plan
Se	ensitivity of Safety	Low	Low	Moderate	Moderate
	Stock route co- location	Present but disturbances managed	Present but disturbances managed	Present but disturbances managed	Present but disturbances managed
Amenity	Sensitivity of adjacent land uses	Low	Low	Moderate	Moderate
Αn	Potential for dust nuisance issues	Low but managed	Low but managed	Potential but managed	Potential but managed
	Potential for light glare issues	Low but managed	Low but managed	Potential but managed	Potential but managed
Ser	nsitivity of Amenity	Low	Low	Moderate	Moderate

10.4 Adopted Significance of Impact Thresholds

Table 10-4 and 10-5 summarise the adopted significance of impact thresholds utilised for the environmental values assessment both pre and post implementation of the planned management strategies respectively.

Table 10-4 Significance of Impacts: Pre-Management Strategies Matrix

		Sensitivity of Envi	nsitivity of Environmental Value	
		High (Rural Connecting Roads & Rural Access Roads)	Moderate (Regional Access Roads)	Low (Highways)
Magnitude of Impact	High (1,000+ AADT)	Major	High	Moderate
	Moderate (251-1,000 AADT)	High	Moderate	Low
	Low (1-250 AADT)	Moderate	Low	Negligible

Table 10-5 Significance of Impacts: Post-Management Strategies Matrix

	Sensitivity of Environmental Value				
		High	Moderate (Rural Connecting Roads & Rural Access Roads)	Low (Regional Access Roads & Highways)	
Magnitude of Impact	High (1,000+ AADT)	Major	High	Moderate	
	Moderate (251-1,000 AADT)	High	Moderate	Low	
	Low (1-250 AADT)	Moderate	Low	Negligible	

10.5 Significance of Impacts Pre-Management Strategies

Figure 10-1 to Figure 10-4 spatially summarises the level of significance of the project's potential road impacts based upon the environmental values assessment approach prior to the implementation of the planned management strategies. The figures identify that the project's potential impacts are anticipated to range from negligible to high level of significance, with the highest level impacts typically forecast to occur on the lower order roads providing access to the major facilities. Table 10-6 provides a summary of the roads in each drainage area with a 'high' or 'major' significance of impact prior to the implementation of the planned management strategies.

Table 10-6 Roads with Significant Impact: Pre-Management Strategies

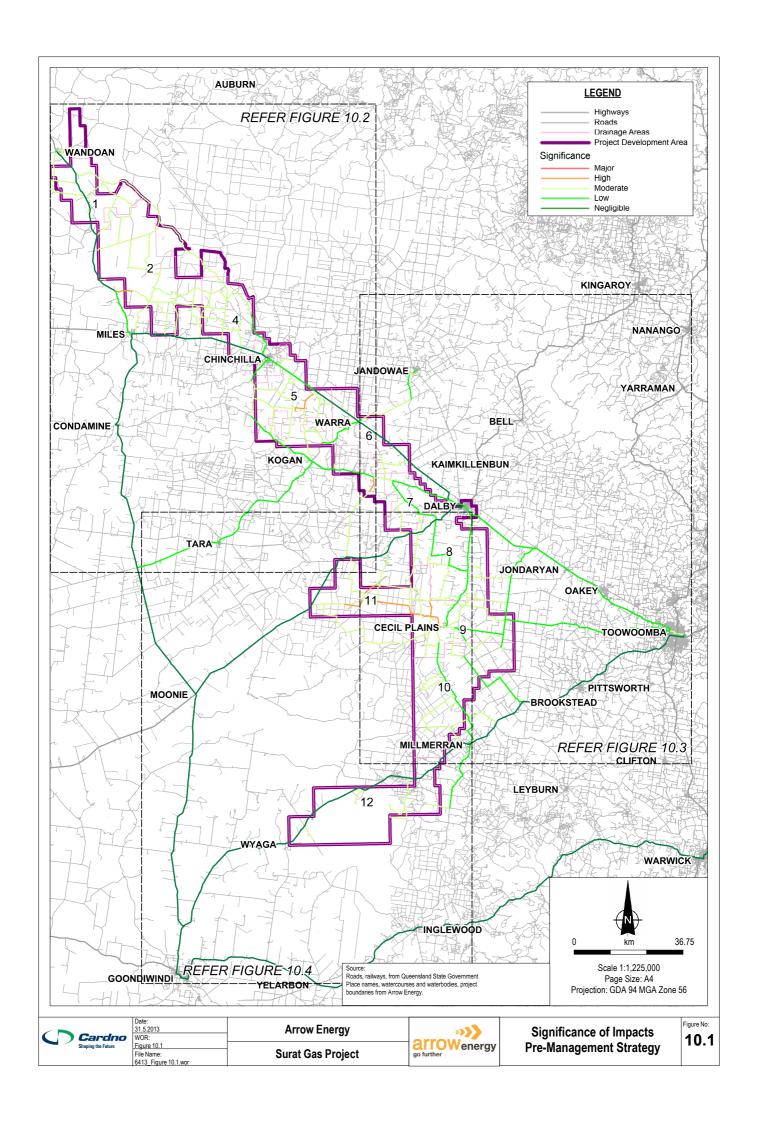
Drainage Area	High	Major
1	Nil	Nil
2	Leichhardt Creek Taroom Road	Nil
4	Nil	Nil
5	Banana Bridge Road, Crees Road	Nil
6	Nil	Nil
7	Kumbarilla Lane	Nil
8	Nil	Nil
9	Duntroon Road, Wilkins Road	Nil
10	Nil	Nil
11	Halliford Road	Nil

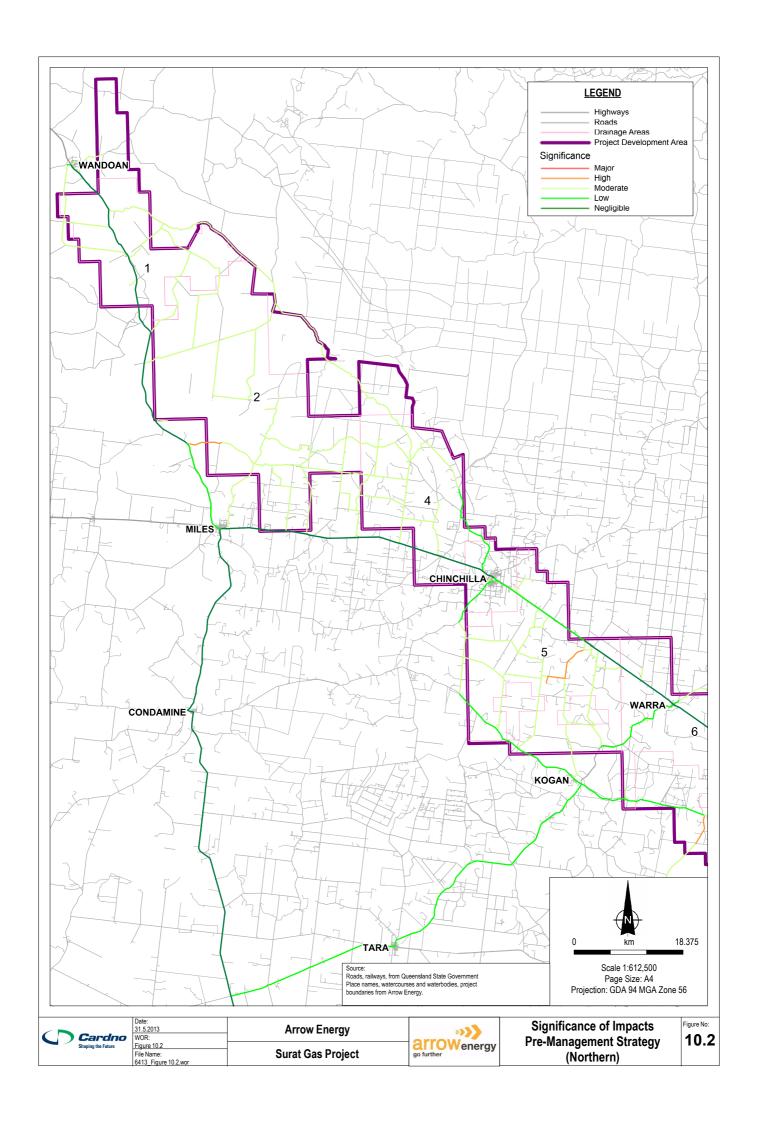
10.6 Significance of Impacts Post-Management Strategies

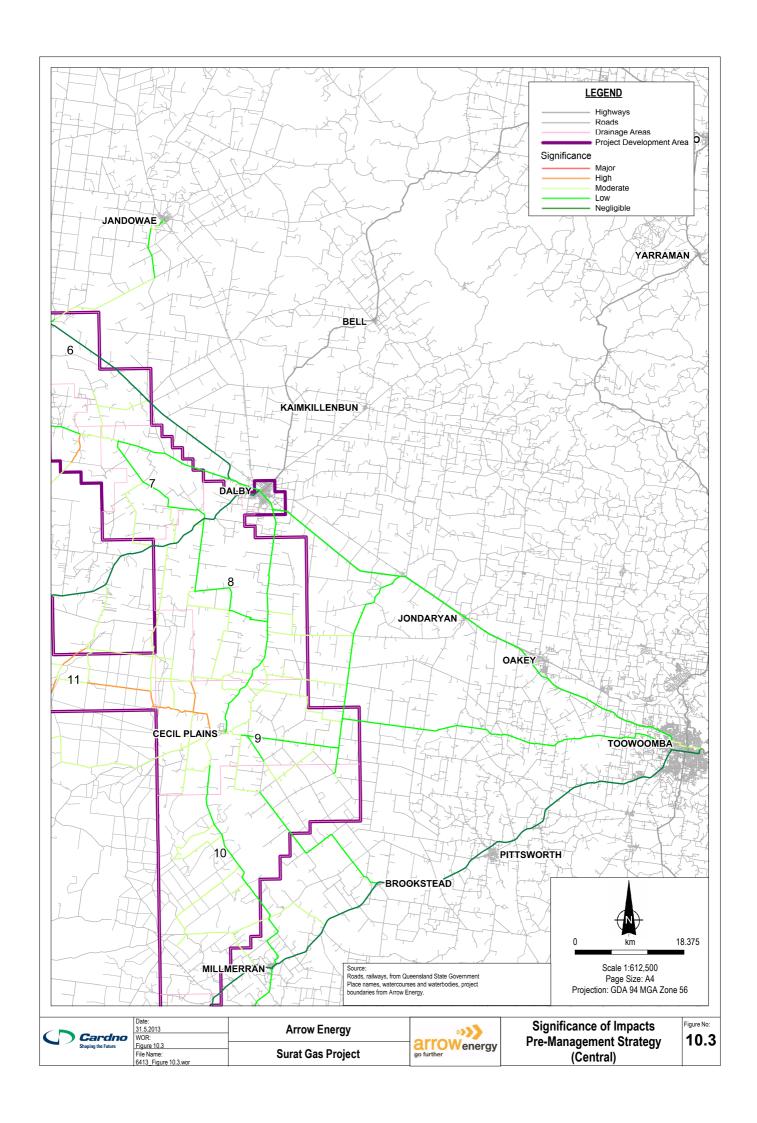
Figure 10-5 to Figure 10-8 spatially summarises the level of significance of the project's potential road impacts based upon the environmental values assessment approach after the implementation of the planned management strategies. The figures identify that the project's potential impacts are anticipated to range from negligible to moderate level of significance, with the highest level impacts typically forecast to occur on the lower order roads providing access to the major facilities. Table 10-7 provides a summary of the roads in each drainage area with a 'high' or 'major' significance of impact post to the implementation of the planned management strategies.

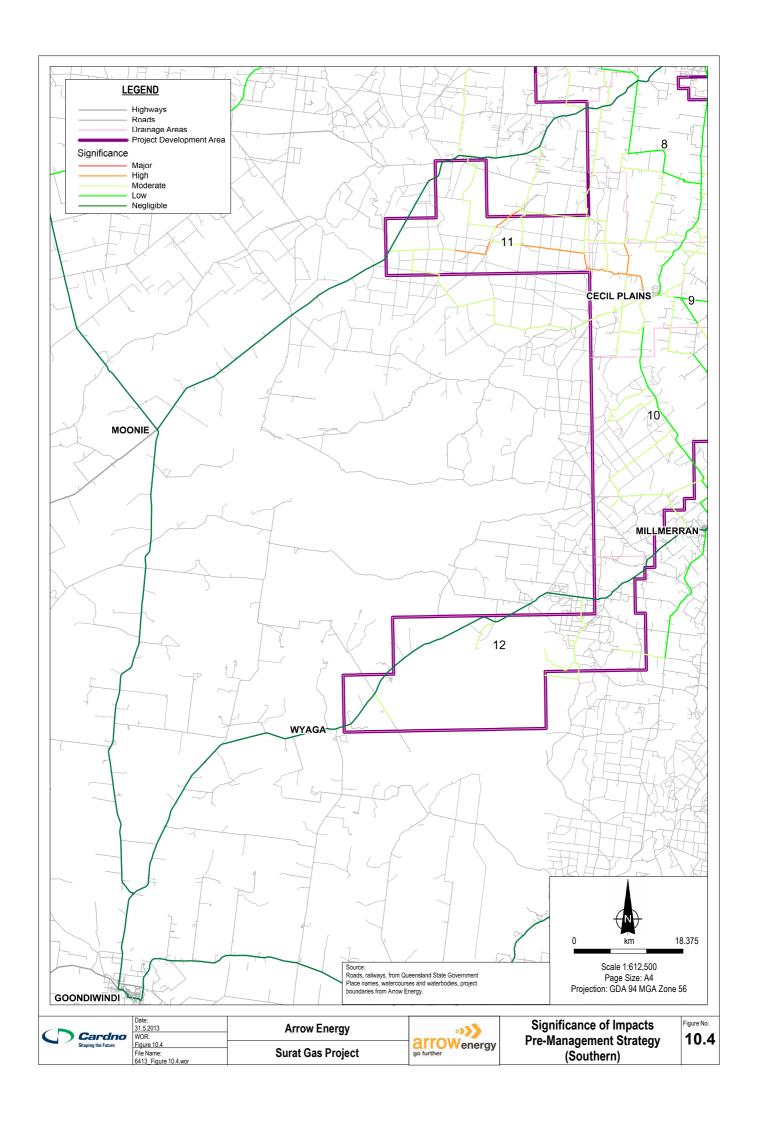
Table 10-7 Roads with Significant Impact: Post-Management Strategies

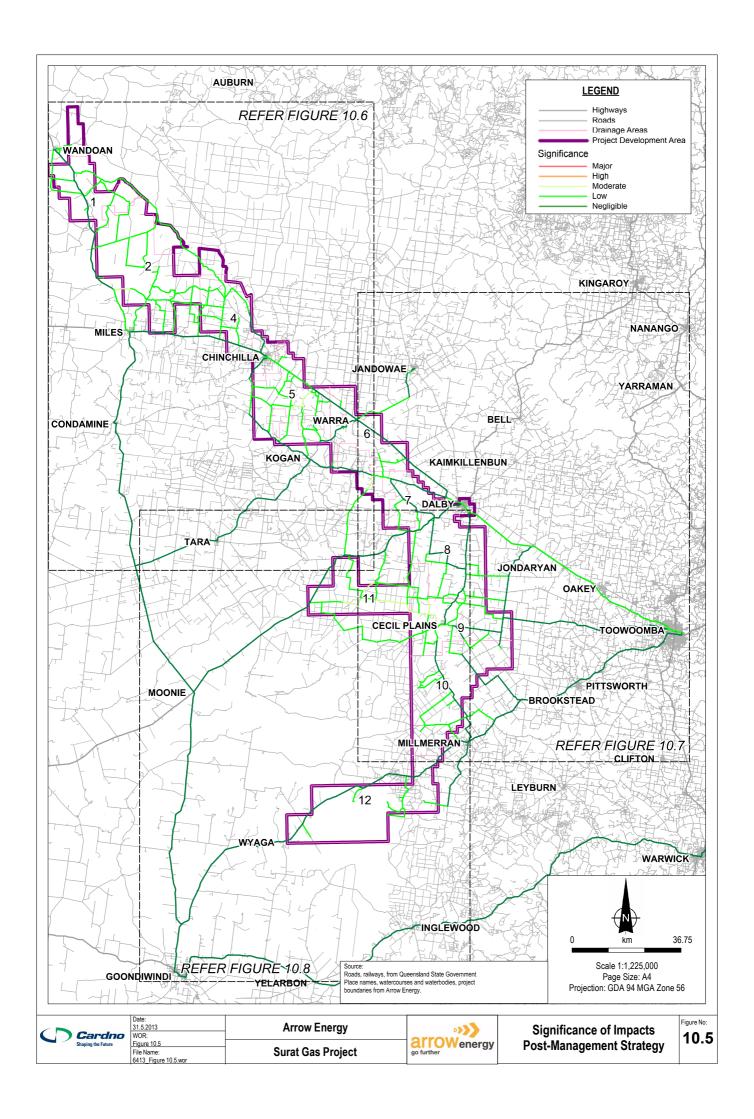
Drainage Area	High	Major
1	Nil	Nil
2	Nil	Nil
4	Nil	Nil
5	Nil	Nil
6	Nil	Nil
7	Nil	Nil
8	Nil	Nil
9	Nil	Nil
10	Nil	Nil
11	Nil	Nil

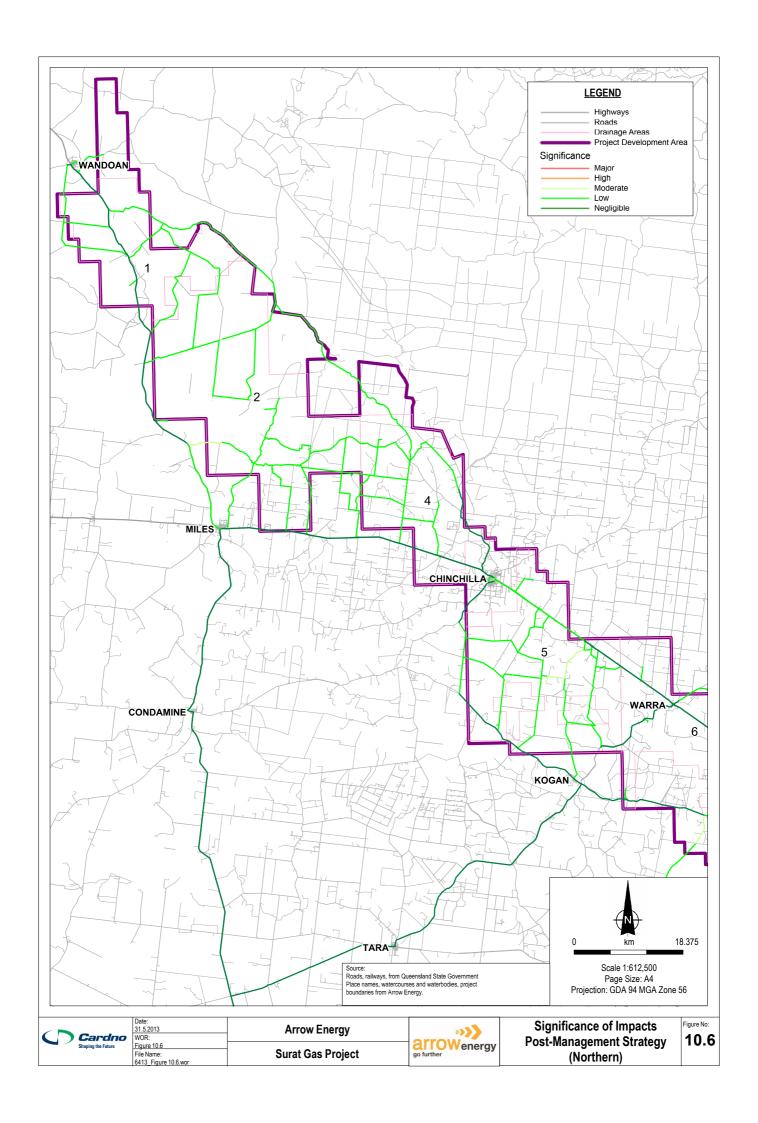

10.7 **Summary of Environmental Values Assessment**

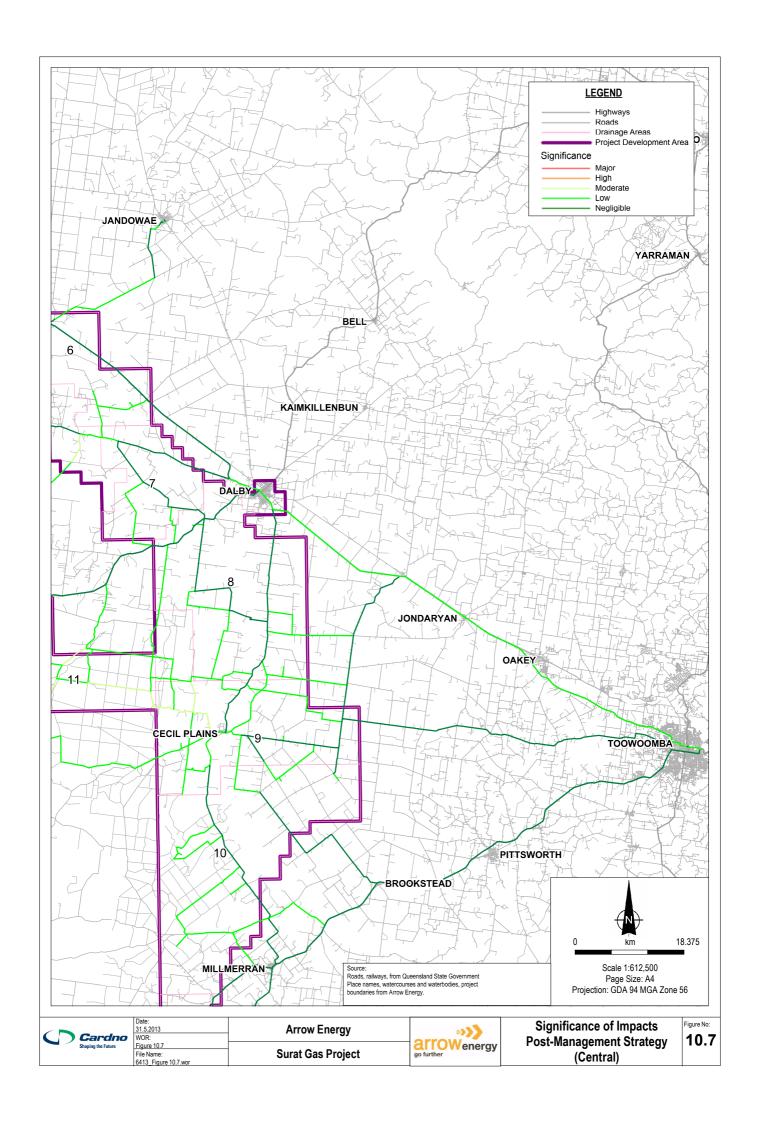

Figure 10-1 and Table 10-6 confirm that in the absence of the planned management strategies being implemented the traffic demands associated with the project could result in negligible to high impacts on the road environment values. The highest levels of impacts are typically forecast to occur on the lower order roads providing access to major facilities (i.e. CGPFs, TWAFs etc.).

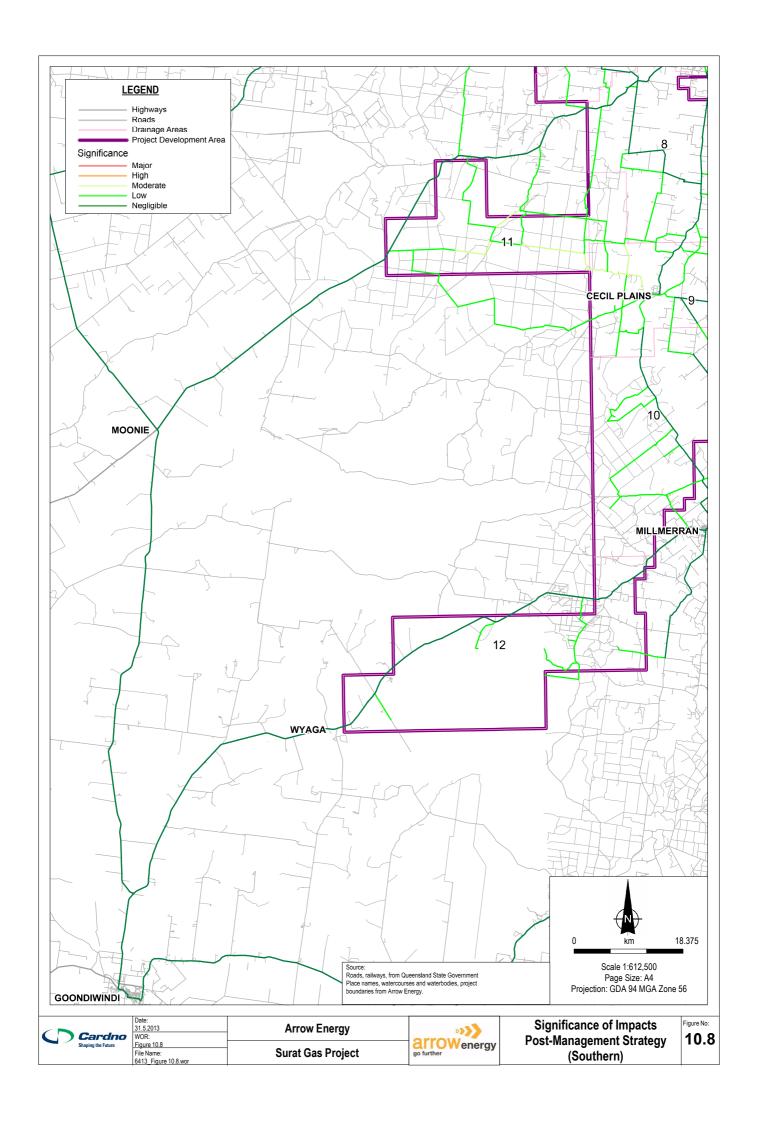

Figure 10-5 and Table 10-7 confirm that if the planned management strategies are implemented, the traffic demands associated with the project could result in negligible to moderate impacts on the road environment values. Therefore, the environmental values assessment has identified that there are unlikely to be impacts so significant (high or major) that they cannot be effectively managed through the implementation of the planned management strategies.


It is expected that the magnitude of the project's impacts will not change as a result of implementation of the planned management strategies as the magnitude is intrinsically linked to the extent of production activities which the planned management strategies do not influence. Instead it is expected that through the implementation of the planned management strategies, the sensitivity of the road environmental values will typically reduce, thereby resulting in typically reduced significance of impacts.


Importantly, consistent with the intent of the SREIS assessment phase, the SREIS RIA does not seek to identify a comprehensive list of the proponent funded road works or monetary contributions ultimately required to support the project. Instead the SREIS RIA seeks to confirm if the planned management strategies are likely to be effective at avoiding, minimising or mitigating all road impacts with a higher order significance associated with the project. The environmental values assessment presented confirms that the planned management strategies will be effective at avoiding, minimising or mitigating road impacts of major and high significance associated with the project.







[This page has been left intentionally blank]

11 Case Study

11.1 Overview

The SREIS RIA expands upon the work previously undertaken as part of the EIS applying both an environmental values assessment approach and a more traditional traffic engineering assessment approach. Both assessment approaches undertaken to support the SREIS RIA seek to determine the significance of residual road impacts post implementation of the planned management strategies. The inclusion of both approaches within the EIS RIA provides road authorities greater certainty that the planned management strategies will preserve key road environmental values whilst also meeting or exceeding typical traffic engineering practice requirements.

Arrow has identified case study sites at which it is likely, but not certain, that major project facilities will ultimately be located subject to further detailed environmental, social, engineering and commercial constraints analysis. For the case study sites the effectiveness of the planned management strategies has been assessed. This approach enables the planned management strategies described in the EIS to be applied to real world locations to confirm that for these sample sites the implementation of the strategies would result in outcomes that demonstrate that the impacts are manageable potentially involving proponent works or contributions that meet or exceed typical traffic engineering practice requirements.

The intent of the traditional traffic engineering assessment presented herein is not to identify an exhaustive list of the proponent funded works and contributions ultimately required to support the project. Identification of such a list at this time is premature as the specific location and delivery timing of all project infrastructure is yet to be finalised. Identification of an exhaustive list will ultimately occur as part of the RIAs prepared post assessment of the EIS to inform the road authority infrastructure agreements.

11.2 **Case Study Facility Locations**

Arrow has identified four sites for locations of CGPFs and a fifth site for location of a TWAF. As stated previously the exact locations of the CGPFs and the TWAF within these sites have not been determined and the final location of infrastructure will be informed by further detailed environmental, social, engineering and commercial constraints analysis post assessment of the EIS. The five facilities for which Arrow has identified likely ultimate sites include:

- > Case Study 1 (Miles) CGPF DA2
- > Case Study 2 (Kumbarilla) CGPF DA7
- > Case Study 3 (Cecil Plains) CGPF DA8, CGPF DA9 and TWAF DA9.

The locations of the five case study facilities are illustrated on Figure 11-1.

11.3 Case Study Assessments

For the purposes of the SREIS RIA and to confirm the effectiveness of the planned management strategies, the following assessments have been undertaken in proximity to the five project facility sites:

- > Fitness for Use Assessment
- > Intersection Assessment
- > Pavement Assessment.

As mentioned previously, the case study assessments have been undertaken applying both an:

- > Environmental Values Assessment Approach
- > Traditional Traffic Engineering Assessment Approach.

The results of the case study assessment are discussed in detail below.

11.4 Scoping Assessment

A scoping assessment was undertaken to identify the locations at which project traffic may potentially significantly increase existing traffic demands in accordance with GARID requirements. The GARID states

that traffic impacts should be considered at all accesses to the State-controlled road network (i.e. where the development has direct access to/from a State-controlled road). In addition, the GARID stipulates that all State-controlled intersections and links where project traffic demands exceed 5% of existing traffic demands should also be assessed.

Figure 11-2 identifies the locations at which project traffic is anticipated to increase existing AADT traffic demands (2011) by 5% or more. The figure identifies the likely extent of the road network over which project traffic demands may significantly increase existing traffic volumes. It is expected that the RIAs, which will be prepared post EIS assessment, would likely need to consider the identified extents (i.e. all roads where project traffic demands exceed 5% of existing traffic demands).

For the purposes of the SREIS RIA, a case study 'Fitness for Use' (FFU) and 'Intersection Assessment' has been undertaken for the road network in close proximity to each of the case study facility location. For the Pavement Assessment, three representative higher order road segments have been assessed as a case study application of the planned management strategies.

The limited extent of the case study assessments is appropriate as the intent of the SREIS RIA is not to identify the exhaustive list of proponent funded road works and contributions ultimately required to support the project. Instead the intent is to assess a sufficient extent of real world case study locations to provide confidence that the planned management strategies will result in outcomes such as proponent works or contributions that meet or exceed typical traffic engineering practice requirements.

11.5 Fitness for Use Assessment

Arrow has committed to the preparation of a Road-use Management Plan (RMP), in consultation with road authorities, as part of the infrastructure agreement process undertaken following assessment of the EIS. A RMP would typically include a FFU Roads Register. The FFU Roads Register will identify the roads currently suitable or suitable after the application of management measures to accommodate project traffic demands.

For the case study locations listed previously, a high level review was undertaken for the potential routes connecting the sites to the highways as shown in Appendix D. The high level FFU review identified a preferred route for access to each facility based on the existing road characteristics. The preferred routes are summarised in Table 11-1 and illustrated on Figure 11-3.

Table 11-1 Case Study: Preferred Re	Routes
-------------------------------------	--------

Case Study	Facility	Preferred Routes	Functional Road Hierarchy	Existing Road Surface Condition
1	CGPF DA2	Leichhardt Creek Taroom Road	Rural Connecting Road	Unsealed
2	CGPF DA7	Kumbarilla Lane	Rural Connecting Road	Sealed
	CGPF DA8	Wanka Road	Rural Connecting Road	Unsealed
3	TWAF DA9	Duntroon Road/Wilkins Road	Rural Access Road	Unsealed
	CGPF DA9	Millmerran-Cecil Plains Road	Regional Connecting Road	Sealed

11.5.2 Planned Management Strategies Approach

Table 9-1 outlines the following planned sealed roads management strategies for sealed routes to project infrastructure (i.e. CGPFs and TWAFs):

- > Undertake a FFU inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed
- > Potentially widen the road to two lane seal width with sealed shoulders and centre and edge line marking
- > Identify required works in ongoing RMPs prepared to support the project.

Table 9-2 outlines the following planned unsealed roads management strategies for unsealed routes to project infrastructure (i.e. CGPFs and TWAFs):

> Undertake a FFU inspection to identify if existing condition of road asset is appropriate for levels of traffic proposed

- > Typically seal road to a two lane seal width with sealed shoulders and centre and edge line marking. However, well maintained gravelled road may be adequate in certain instances if mutual agreement is reached with Council
- > Enter into agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities
- > Identify required works in ongoing RMPs prepared to support the project.

Table 11-2 provides a summary of the theoretical infrastructure works for each of the case study preferred routes, based upon application of the abovementioned planned management strategies. However, it is important to note that for the unsealed case study roads (i.e. Leichhardt Creek Taroom Road, Wanka Road, Duntroon Road and Wilkins Road) a mutual agreement could be obtained with Council for a well maintained gravelled road. Alternatively, Arrow could enter into an agreement with Council to hand back roads in no worse a state of repair compared with the condition at the start of construction activities.

Table 11-2 Case Study: Preferred Routes – Planned Management Strategies Approach

Case Study	Facility	Preferred Routes	Theoretical Road Upgrade Requirements
1	CGPF DA2	Leichhardt Creek Taroom Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking
2	CGPF DA7	Kumbarilla Lane	Widen to a two lane sealed road with sealed shoulders and appropriate line marking
	CGPF DA8	Wanka Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking
3	TWAF DA9	Duntroon Road/Wilkins Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking
	CGPF DA9	Millmerran-Cecil Plains Road	Widen to a two lane sealed road with sealed shoulders and appropriate line marking

11.5.3 **Traditional Traffic Engineering Approach**

Table 11-3 provides a summary of the existing, peak project and peak design AADT on each of the identified case study preferred routes. The peak design AADT represents the anticipated peak AADT on each route during the life of the project, including project and background traffic volumes.

Table 11-3 Case Study: Preferred Routes - Peak Traffic Demands

Case Study	Facility	Preferred Routes	Existing AADT*	Peak Project AADT	Peak Design AADT
1	CGPF DA2	Leichhardt Creek Taroom Road	80	300	390
2	CGPF DA7	Kumbarilla Lane	785	312	1,217
	CGPF DA8	Wanka Road	65	10	100
3	TWAF DA9	Duntroon Road/Wilkins Road	40	351	396
	CGPF DA9	Millmerran-Cecil Plains Road	220	260	610

^{*} Existing AADT derived from peak hour intersection surveys undertaken by Cardno in March 2013

The EIS RIA outlined best practice standards for likely road upgrade requirements on sealed and unsealed roads. The road upgrade requirements are generally based on traffic volume thresholds. Table 11-4 provides a summary of the theoretical infrastructure works for each of the case study routes, based on a traditional traffic engineering approach (i.e. traffic volume thresholds).

Table 11-4 Case Study: Road Upgrades – Traditional Traffic Engineering Approach

Case Study	Facility	Preferred Routes	Theoretical Road Upgrade Requirements
1	CGPF DA2	Leichhardt Creek Taroom Road	Sealing typically warranted
2	CGPF DA7	Kumbarilla Lane	Sealed traffic lane width of 7.0m plus 2.0m total shoulder width (1.0m sealed shoulder)

Case Study	Facility	Preferred Routes	Theoretical Road Upgrade Requirements
	CGPF DA8	Wanka Road	Economic benefit assessment of sealing warranted
3	TWAF DA9	Duntroon Road/Wilkins Road	Sealing typically warranted
5 -	CGPF DA9	Millmerran-Cecil Plains Road	Sealed traffic lane width of 7.0m (desirable) plus 1.5m total shoulder width (0.5m sealed shoulder)

11.5.4 **Fitness for Use Assessment Summary**

Table 11-5 compares the theoretical infrastructure works required for each of the case study routes based on each of the assessment approaches. In summary, the planned management strategies for sealed and unsealed roads presented in both the EIS and SREIS, meet or exceed typical traffic engineering practice requirements.

Table 11-5 Case Study: Comparison of Theoretical Road Upgrade Requirements

			<u> </u>		
Case Study	Facility	Preferred Routes	Planned Management Strategies Approach	Traditional Traffic Engineering Approach	
1	CGPF DA2	Leichhardt Creek Taroom Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking	Sealing typically warranted	
2	CGPF DA7	Kumbarilla Lane	Widen to a two lane sealed road with sealed shoulders and appropriate line marking Sealed traffic lane widt plus 2.0m total should (1.0m sealed should should be considered in the constant of		
3	CGPF DA8	Wanka Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking	Economic benefit assessment of sealing warranted	
	TWAF DA9	Duntroon Road/Wilkins Road	Upgrade to a two lane sealed road with sealed shoulders and appropriate line marking	Sealing typically warranted	
	CGPF DA9	Millmerran-Cecil Plains Road	Widen to a two lane sealed road with sealed shoulders and appropriate line marking	Sealed traffic lane width of 7.0m (desirable) plus 1.5m total shoulder width (0.5m sealed shoulder)	

11.6 Intersection Assessment

Arrow has committed to the preparation of a RMP, in consultation with road authorities, as part of the infrastructure agreement process undertaken following assessment of the EIS. The RIAs, undertaken following approval where necessary, will typically include consideration of specific impacts on intersection performance and will be undertaken in accordance with the scoping identified previously (that is, at intersections where traffic volumes increase by 5% or more as a result of project related traffic).

For the purposes of the SREIS RIA, intersection impacts associated with potential project infrastructure locations were identified for the sites previously. Based on the FFU assessment and the identification of the preferred access routes, the first point of access to the State-controlled road network was considered. The identified case study intersections are summarised in Table 11-6 and illustrated on Figure 11-3. The detailed review for each intersection is included at Appendix E.

Table 11-6 Case Study: Intersection Assessment – Existing Treatments

Case Study	Facility	Intersection	Existing Treatment
1	CGPF DA2	Leichhardt Highway/Leichhardt Creek Taroom Road	Priority/No Turn Treatment
2	CGPF DA7	Dalby-Kogan Road/Kumbarilla Lane	Priority/No Turn Treatment
	CGPF DA8	Dalby-Cecil Plains Road/Wanka Road	Priority/No Turn Treatment
3	TWAF DA9	Cecil Plains-Moonie Road/Duntroon Road	Priority/No Turn Treatment
	CGPF DA9	Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road	Priority/No Turn Treatment

11.6.2 **Planned Management Strategies Approach**

Table 9-3 outlines the following planned access roads management strategies for access roads to project infrastructure (i.e. CGPFs and TWAFs):

- > Turn lanes and acceleration lanes may be required at facility accesses
- > Upgrades at nearest highway or regional connecting road intersection may be necessary (i.e. turn lanes, signage, line marking etc.)
- > Identifying required works in ongoing RMPs prepared to support the project.

The geometry of priority controlled intersections is typically driven by safety and design vehicle considerations as opposed to capacity constraints. For example, protected short turn lanes are usually provided to reduce the incidence of rear end crashes, rather than to allow more vehicles to pass through the intersection (i.e. to allow greater capacity). As a result, it is likely that each intersection to major project facilities (i.e. CGPFs, CGPFs with Water Treatment Facilities, FCFs and TWAFs) from a State-controlled road will require both an auxiliary left turn lane (AUL) and a channelised right turn lane (CHR). This is consistent with the intent of the planned access roads management strategies outlined in Table 9-3.

Table 11-7 provides a summary of the likely required infrastructure works for each of the case study intersections, based on the abovementioned planned management strategies.

Table 11-7 Case Study: Intersection Upgrades – Planned Management Strategies Approach

Case Study	Facility	Intersection	Theoretical Infrastructure Upgrade Works
1	CGPF DA2	Leichhardt Highway/Leichhardt Creek Taroom Road	AUL/CHR
2	CGPF DA7	Dalby-Kogan Road/Kumbarilla Lane	AUL/CHR
3	CGPF DA8	Dalby-Cecil Plains Road/Wanka Road	AUL/CHR
	TWAF DA9	Cecil Plains-Moonie Road/Duntroon Road	AUL/CHR
	CGPF DA9	Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road	AUL/CHR

Note: AUL = Auxiliary Left Turn, CHR = Channelised Right Turn

11.6.3 Traditional Traffic Engineering Approach

Consistent with the key findings of the literature review presented in Section 8 of this SREIS, the following assessments have been undertaken for each of the case study intersections:

- > Safety Assessment
- > Operational Assessment
- > Turn Warrant Assessment.

Key findings are summarised below with detailed outputs included at Appendix E.

The safety assessment included a detailed review of available sight distances as well as a historical crash data at each of the study intersections. The intent of the safety assessment was to identify if there are existing safety deficiencies which would prohibit the intersection from being utilised by project traffic or would trigger the need for improvements prior to being utilised by project traffic. This assessment confirmed that no safety upgrades would be required at each of the case study intersections to accommodate peak anticipated project traffic demands.

The operational assessment included detailed analysis of the potential impacts on the performance at each study intersection (i.e. vehicular delays and queues etc.) as a result of the increased project traffic demands. The intent of the operational assessment was to identify if intersection upgrades would be required to accommodate the increase in traffic demands generated by the project. It is important to note that the turn warrant assessment assumed that all daily project traffic demands would occur in the peak hour periods. Therefore the results presented herein are considered to be conservative. Nevertheless, this assessment confirmed that no intersection upgrades would be required at each of the case study intersections to accommodate peak anticipated project traffic demands.

A detailed turn warrant assessment was undertaken for each of the case study intersections based on the methodology and volume thresholds outlined in Section 8.1.2. The intent of the turn warrant assessment was to identify if additional turn lanes and deceleration lanes would be required to accommodate the increase in traffic demands generated by the project. It is important to note that the turn warrant assessment utilises daily project traffic demands rather than peak hour demands. Therefore the results presented in Table 11-8 are considered to be conservative.

Table 11-8 Case Study: Intersection Upgrades - Traditional Traffic Engineering Approach

Case Study	Facility	Intersection	Theoretical Infrastructure Upgrade Works
1	CGPF DA2	Leichhardt Highway/Leichhardt Creek Taroom Road	BAL/CHR
2	CGPF DA7	Dalby-Kogan Road/Kumbarilla Lane	BAL/CHR(s)
3	CGPF DA8	Dalby-Cecil Plains Road/Wanka Road	BAL/BAR
	TWAF DA9	Cecil Plains-Moonie Road/Duntroon Road	BAL/BAR
	CGPF DA9	Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road	BAL/CHR(s)

Note: BAL = Basic Left Turn, BAR = Basic Right Turn, CHR = Channelised Right Turn, CHR(s) = Short Channelised Right Turn

11.6.4 **Intersection Assessment Summary**

Table 11-9 compares the theoretical infrastructure works required for each of the case study intersection based on each of the assessment approaches. In summary, the planned management strategies for access roads presented in both the EIS and SREIS, meet or exceed typical traffic engineering practice requirements.

Table 11-9 Case Study: Comparison of Theoretical Intersection Upgrade Requirements

Case Study	Facility	Preferred Routes	Planned Management Strategies Approach	Traditional Traffic Engineering Approach
1	CGPF DA2	Leichhardt Highway/ Leichhardt Creek Taroom Road	AUL/CHR	BAL/CHR
2	CGPF DA7	Dalby-Kogan Road/ AUL/CHR BAL/CH Kumbarilla Lane		BAL/CHR(s)
3	CGPF DA8	Dalby-Cecil Plains Road/ Wanka Road	AUL/CHR	BAL/BAR
	TWAF DA9	Cecil Plains-Moonie Road/ Duntroon Road	AUL/CHR	BAL/BAR
	CGPF DA9	Cecil Plains-Moonie Road/ Millmerran-Cecil Plains Road	AUL/CHR	BAL/CHR(s)

11.7 **Pavement Assessment**

Arrow has committed to the preparation of a RMP, in consultation with road authorities, as part of the infrastructure agreement process undertaken following assessment of the EIS. The RIAs, undertaken following approval where necessary, will typically include consideration of specific impacts on pavement rehabilitation and maintenance and will be undertaken in accordance with the scoping identified previously (that is, on State-controlled road segments where traffic volumes increase by 5% or more as a result of project related traffic).

For the purposes of the SREIS RIA, three representative road sections have been utilised to demonstrate the application of the pavement impact methodology. The adopted representative sections are illustrated on Figure 11-3 and summarised below:

- > Warrego Highway (Chinchilla to Miles) (TMR Ref: 18C: 80.175km to 126.754km)
- > Millmerran-Cecil Plains Road (TMR Ref: 3251: 0.000km to 35.610km)
- > Moonie Highway (Dalby to Nandi) (TMR Ref: 35A: 0.000km to 11.000km).

Detailed methodology and results are included at Appendix F.

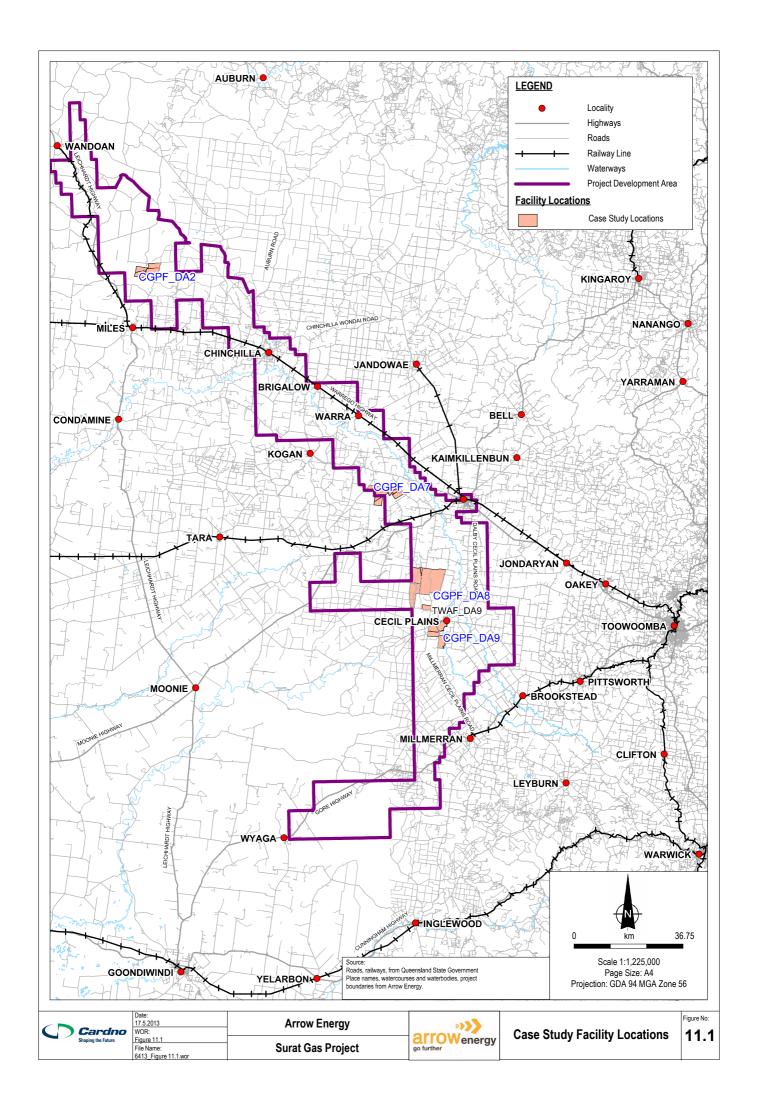
11.7.1 **Planned Management Strategies Approach**

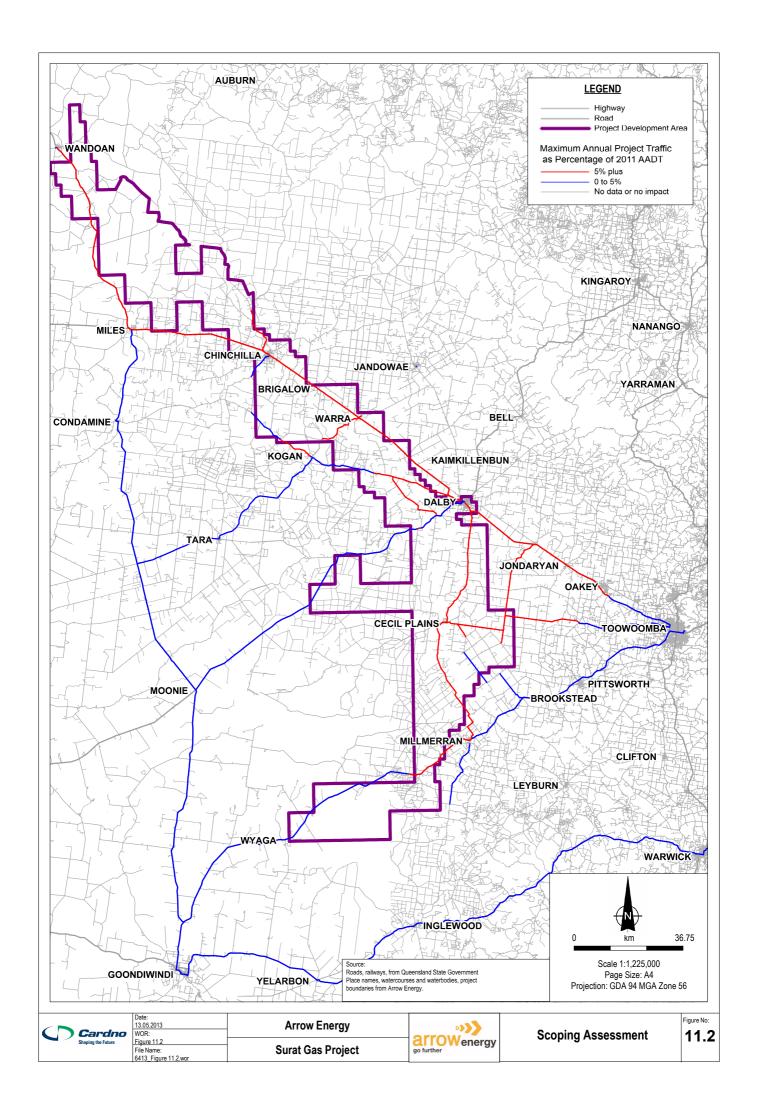
Table 9-1 outlines the following planned sealed road management strategies for sealed roads to project infrastructure (i.e. CGPFs and TWAFs):

> Contribution may be required towards more frequent pavement maintenance as a result of increased heavy vehicle movements.

11.7.2 **Traditional Traffic Engineering Approach**

Table F4 and Figure F-2 in Appendix F summarises the reduction in estimated service life of the assessed pavement on each of the case study road segments as a result of the project. In accordance with TMR's GARID, the project is defined as having a significant impact on the timing of pavement rehabilitation only where the acceleration time exceeds one year.


This assessment has identified those sections where a significant impact is anticipated on the timing of rehabilitation based on the project case modelled. Typically the proponent contributes to the cost difference required in bringing the pavement rehabilitation forward from that planned in consultation with road authorities. Typically the proponent contributes to the additional maintenance costs associated with increases in heavy vehicles in consultation with road authorities. Monetary contributions have not been identified as part of the SREIS assessment as this can most accurately be determined during the detailed design stage following assessment of the EIS.


11.7.3 **Pavement Assessment Summary**

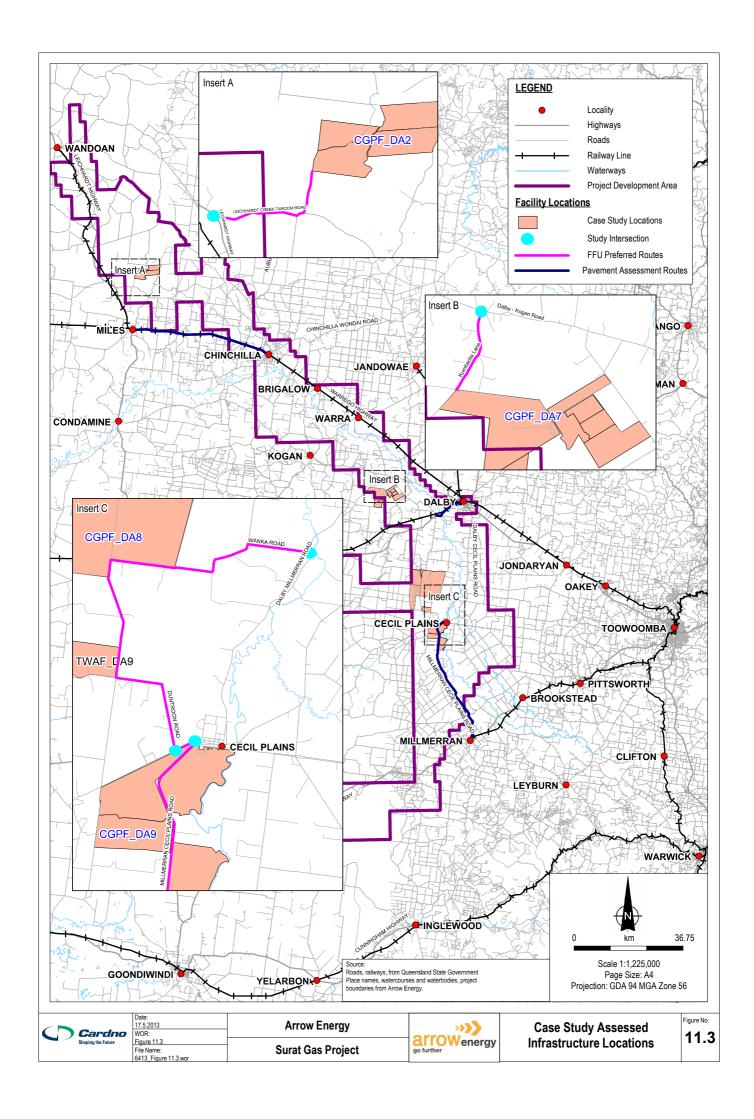

Table 11-10 compares the theoretical infrastructure works required for each of the case study intersection based on each of the assessment approaches. In summary, the planned management strategies for sealed roads presented in both the EIS and SREIS, meet or exceed typical traffic engineering practice requirements.

Table 11-10 Case Study: Comparison of Theoretical Pavement Rehabilitation Requirements

TMR Ref	Road	Segment	Planned Management Strategies Approach	Traditional Traffic Engineering Approach
18C	Warrego Highway (Chinchilla to Miles)	80.175km to 126.754km	Contributions may be required	This assessment identified that there are road segments along the case study routes where the proponent would need to contribute to pavement
3251	Millmerran-Cecil Plains Road	0.000km to 35.610km	towards more frequent pavement maintenance as a result of increased heavy	
35A	Dalby to Nandi 0.000km to 11.000km		vehicle movements	rehabilitation and maintenance.

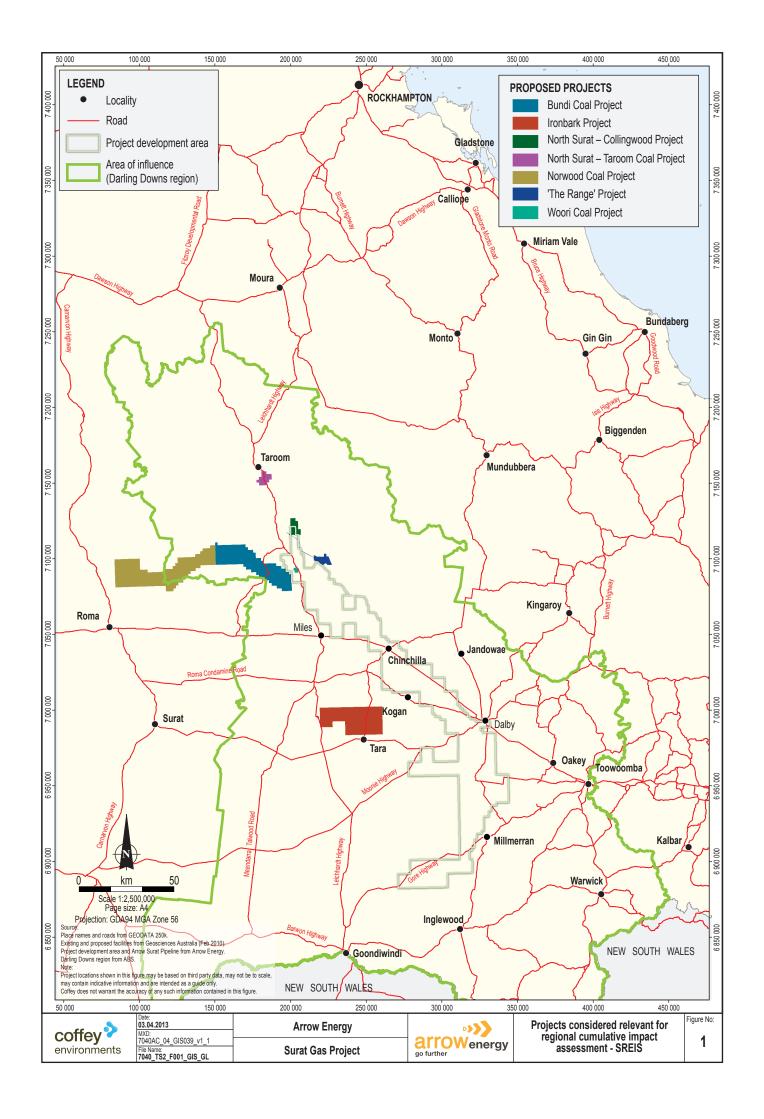
12 Conclusions

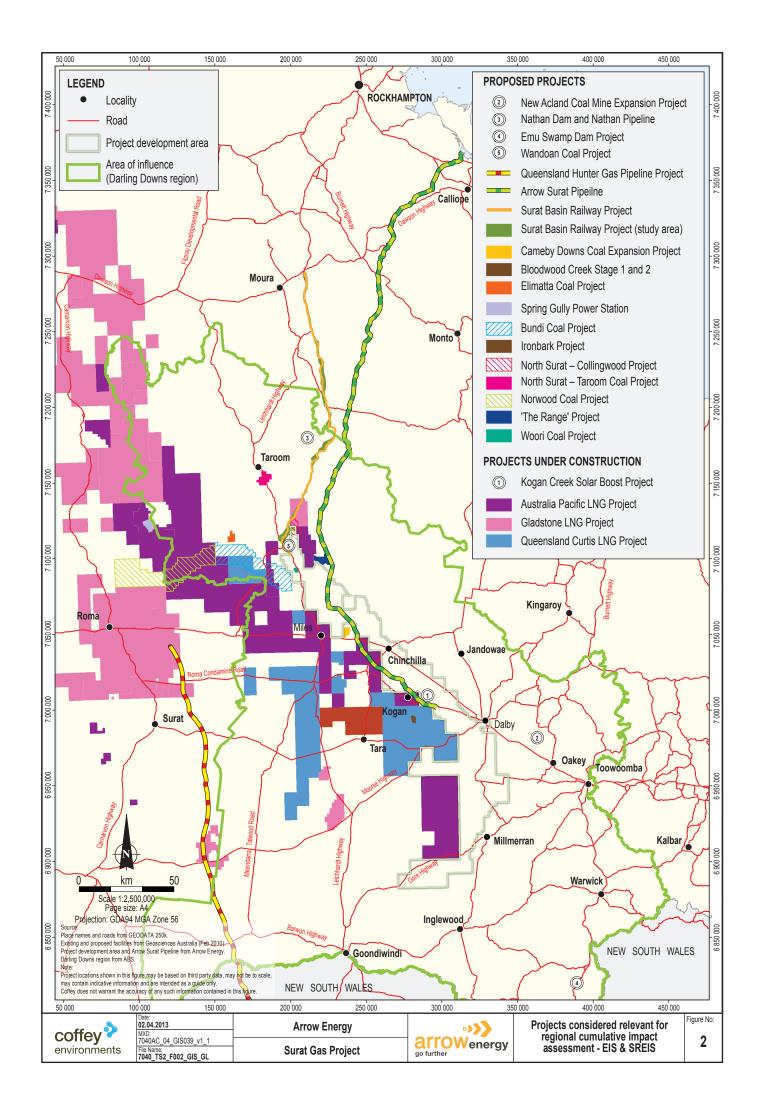
The SREIS RIA has been undertaken to assess the road based transport impacts associated with the Surat Gas Project. The SREIS RIA has sought to establish if there are likely to be any road impacts that cannot be effectively managed through either the application of appropriate approval conditions, or through the application of the planned management strategies. The assessment has identified the following:

- > Existing traffic conditions such as traffic volumes, traffic growth, school bus and stock routes remain generally consistent with that assessed in the EIS RIA.
- > The traffic generation of the various activities associated with the project has been refined from that presented within the EIS RIA based upon more detailed logistics planning undertaken since the EIS RIA was prepared.
- > A strategic traffic model has been developed to forecast the traffic demands associated with the project to inform the assessment presented within the SREIS RIA.
- > The strategic traffic modelling identifies that as a result of the revised traffic generation assumptions and updated project planning that the extent of travel likely to be associated with the project has increased from that presented in the EIS RIA. The updated modelling also identifies that there is likely to be a strong desire line between Toowoomba and Cecil Plains via Toowoomba-Cecil Plains Road which was not previously identified in the EIS RIA.
- > The best practice traffic engineering guidance presented within the EIS RIA remains current.
- > The management strategies presented within the EIS RIA are still considered appropriate however two additional strategies are now proposed to support these. The additional strategies include a commitment to undertake fit for use road inspections and to enter into agreements with road authorities to hand back roads in no worse state of repair following their use by project traffic.
- > An environmental values assessment has been undertaken as part of the SREIS RIA to confirm the effectiveness of the planned management strategies to effectively avoid, minimise and mitigate all higher order significance impacts associated with project traffic. The assessment has identified that the planned management strategies will be effective at avoiding, minimising or mitigating impacts.
- > Case study assessments have been undertaken to present "real world" examples of the outcomes to achieve via the application of the planned management strategies and how these outcomes compare to standard traffic engineering practice. The case studies identified that application of the planned management strategies results in intersection works, link works and pavement contributions that meet or exceed typical traffic engineering practice requirements. The assessment therefore confirms that the planned management strategies are appropriate.

The SREIS RIA has established that there is unlikely to be any residual road impacts so significant post implementation of approval conditions and the planned management strategies that they should preclude approval of the project. The SREIS RIA has confirmed that the planned management strategies will result in intersection, link and pavement works which meet or exceed standard traffic engineering practice requirements. The planned management strategies establish the framework which will inform future assessments of the project's impacts. A comprehensive list of works ultimately required to accommodate project traffic can most appropriately be determined during the detailed design stage as part of RIAs prepared to inform any required infrastructure agreements with road authorities.

[This page has been left intentionally blank]


References

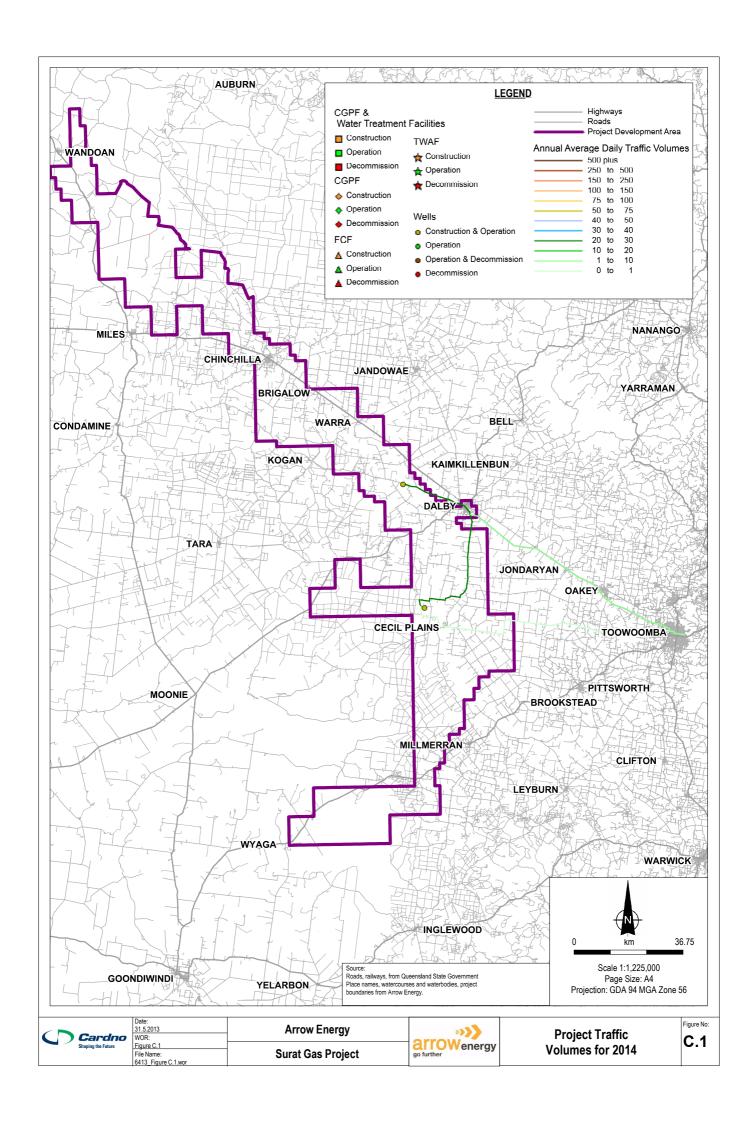

- Arndt, Troutbeck, Handley & Slattery 2006, New Warrants for Unsignalised Intersection Turn Treatments.
- ARRB 2009, *Unsealed roads manual: guidelines to good practice*, 3rd ed., ARRB Group, Austroads, Victoria, Melbourne.
- Austroads 2011, Establishment of a New Pavement Maintenance Database Stage 1 and 2 Analysis, Austroads Research Report AP-R394-11, Austroads, New South Wales, Sydney.
- Austroads 2003, Rural Road Design: A Guide to the Geometric Design of Rural Roads, Austroads, New South Wales, Sydney.
- Austroads 2010, Guide to Road Design Part 3: Geometric Design, Austroads, New South Wales, Sydney.
- Austroads 2010, Guide to Road Design Part 4A: Unsignalised and Signalised Intersections, Austroads, New South Wales, Sydney.
- Austroads 2010, Road Safety Engineering Risk Assessment Part 7: Crash Rates Database, Technical Report AP-T152/10, Austroads, New South Wales, Sydney.
- Guide to Road Safety Part 5: Road Safety Rural and Remote Areas (Austroads, 2006)
- Guide to Traffic Engineering Practice Part 2: Roadway Capacity (Austroads, 1999)
- Guide to Traffic Management Part 3: Traffic Studies and Analysis (Austroads, 2009)
- Austroads 1988, *Guide to Traffic Engineering Practice Part 2: Roadway Capacity,* Austroads, New South Wales, Sydney.
- Department of Transport and Main Roads 2012, *Long distance coaches*, accessed March 2013, Queensland Government, Queensland, Brisbane. http://www.tmr.qld.gov.au/Travel-and-transport/Qconnect/Long-distance-coaches.aspx
- Department of Transport and Main Roads 2012, *Queensland Transport and Roads Investment Program* 2012-13 to 2015-16, Queensland Government, Queensland, Brisbane.
- Department of Transport and Main Roads 2011, *AADT Segment Reports* for *Darling Downs South West Region*, Queensland Government, Queensland, Brisbane.
- Department of Transport and Main Roads 2009, *Multi-combination routes and zones in Queensland 2009*, 1:3,000,000, Queensland Government, Queensland, Brisbane.
- Department of Transport and Main Roads 2009, *Queensland's B-triple Network May 2009,* 1:3,000,000, Queensland Government, Queensland, Brisbane.
- Department of Transport and Main Roads 2006, *Guidelines for the Assessment of Road Impacts of Development*, Queensland Government, Queensland, Brisbane.
- Department of Transport and Main Roads 2004, *Chapter 5: Traffic Parameters and Human Factors*, Road Planning and Design Manual, Queensland Government, Queensland, Brisbane.
- Manual of Uniform Traffic Control Devices Part 7: Railway Crossings (Queensland Government, 2009)
- Road Planning and Design Manual (TMR, 2009)
- Notes for Contribution Calculations (TMR Central District, 2008)
- Department of Transport and Main Roads Passenger Transport Division 2012, *School Kilometric Bus Routes State*, GIS Data Set, Queensland Government Information Service, Queensland, Brisbane.
- Guide for the Road Safety Management of Rural School Bus Routes and Bus Stops (Department of Main Roads, 2002)
- Roads and Traffic Authority (now Roads and Maritime Services) 2002, *Guide to Traffic Generating Developments*, New South Wales Government, New South Wales, Sydney.

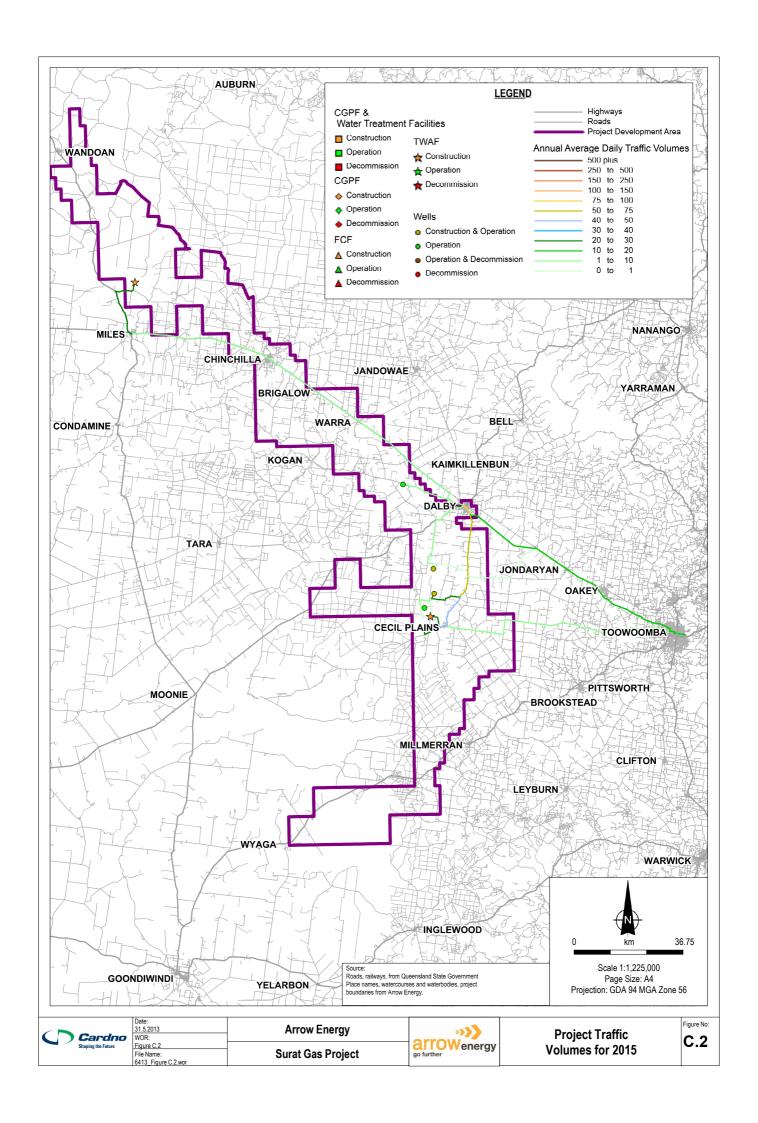
Surat Gas Project SREIS

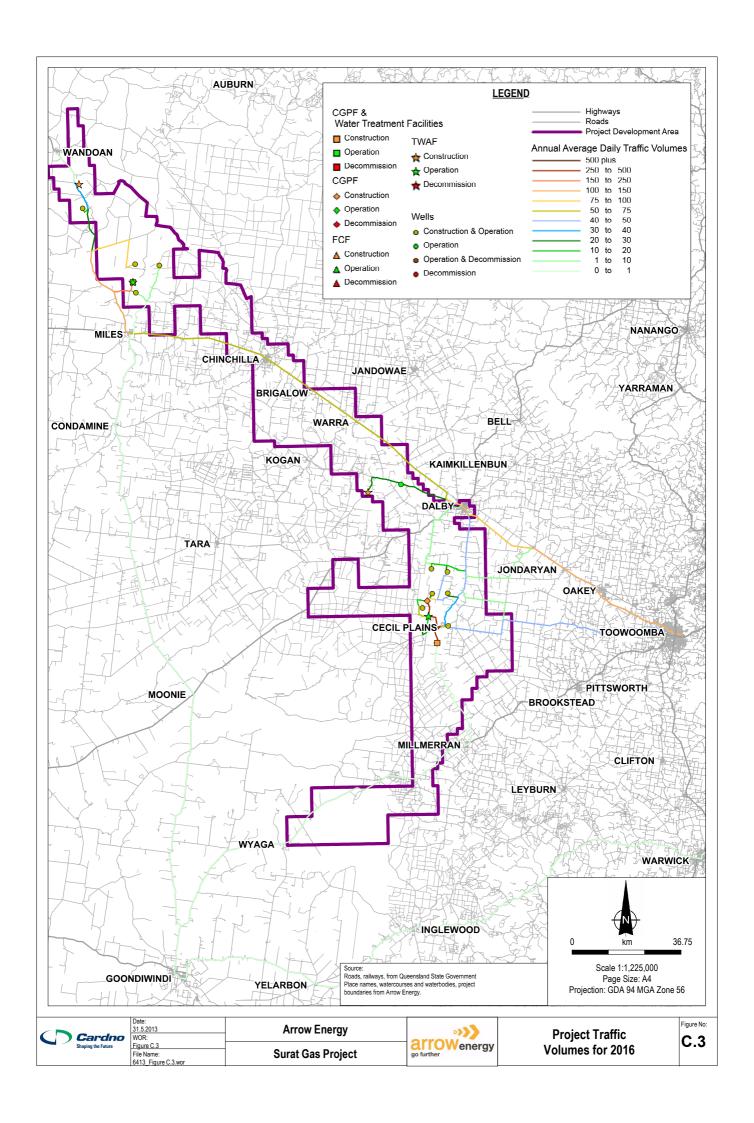
APPENDIX A
Approximate Locations of Other Projects

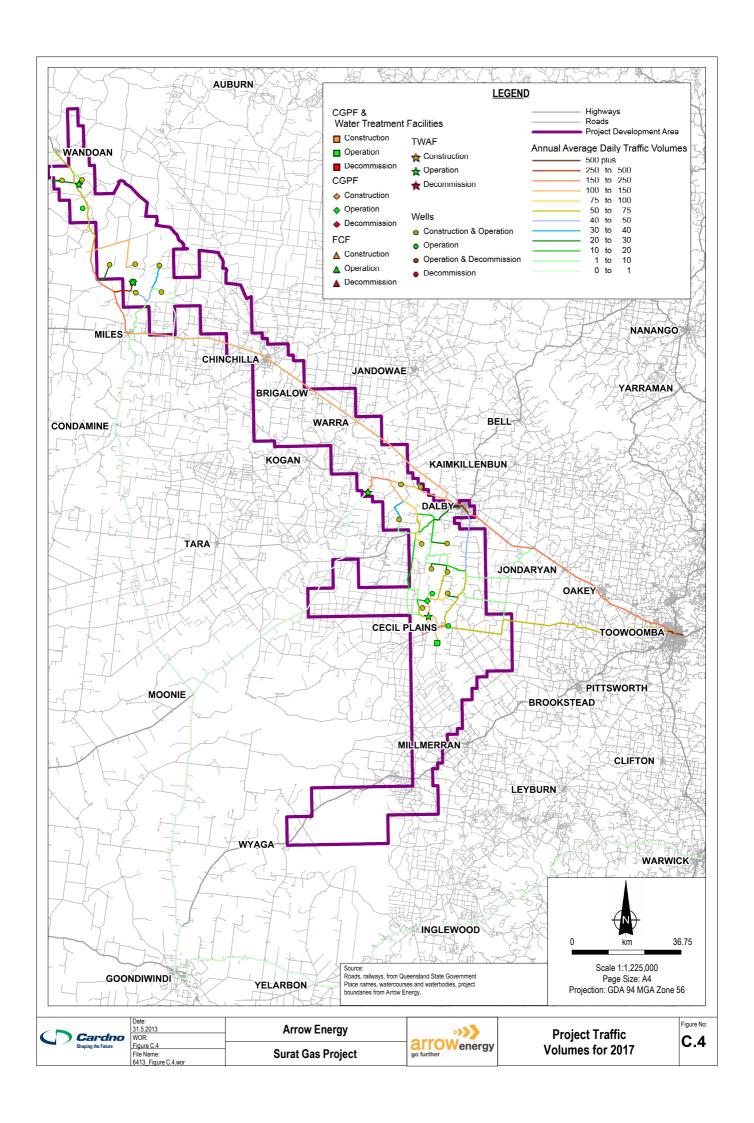
Surat Gas Project SREIS

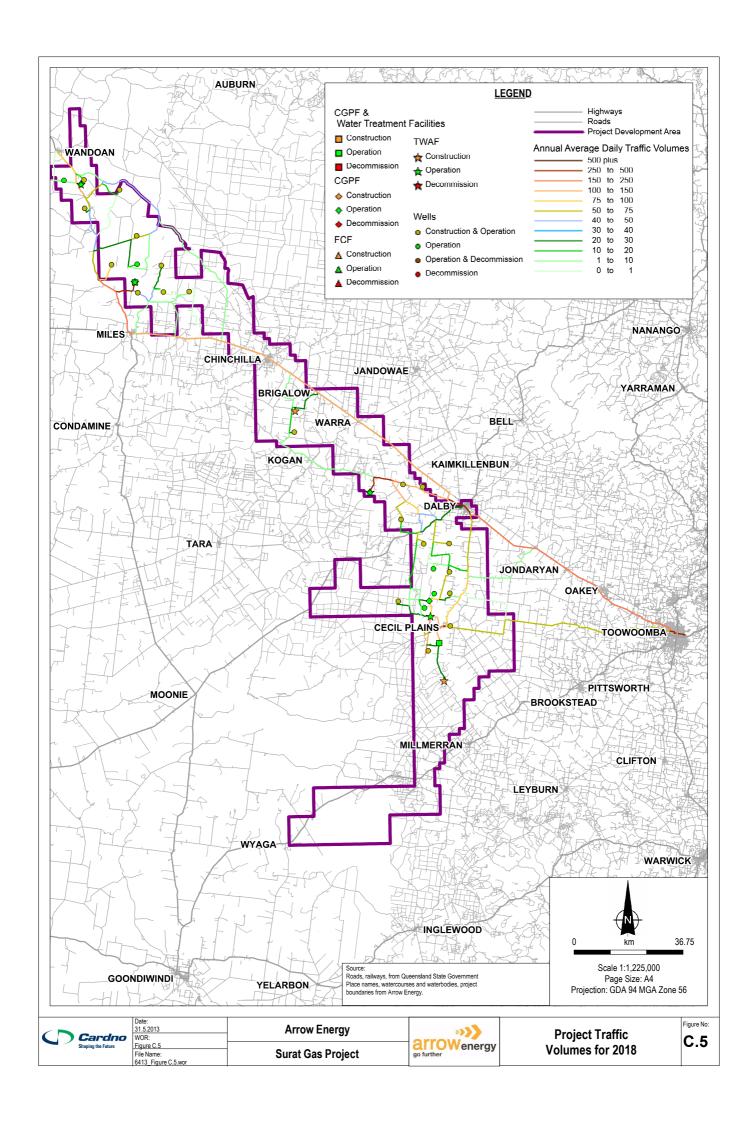
APPENDIX B
Project Activities and Traffic Generation

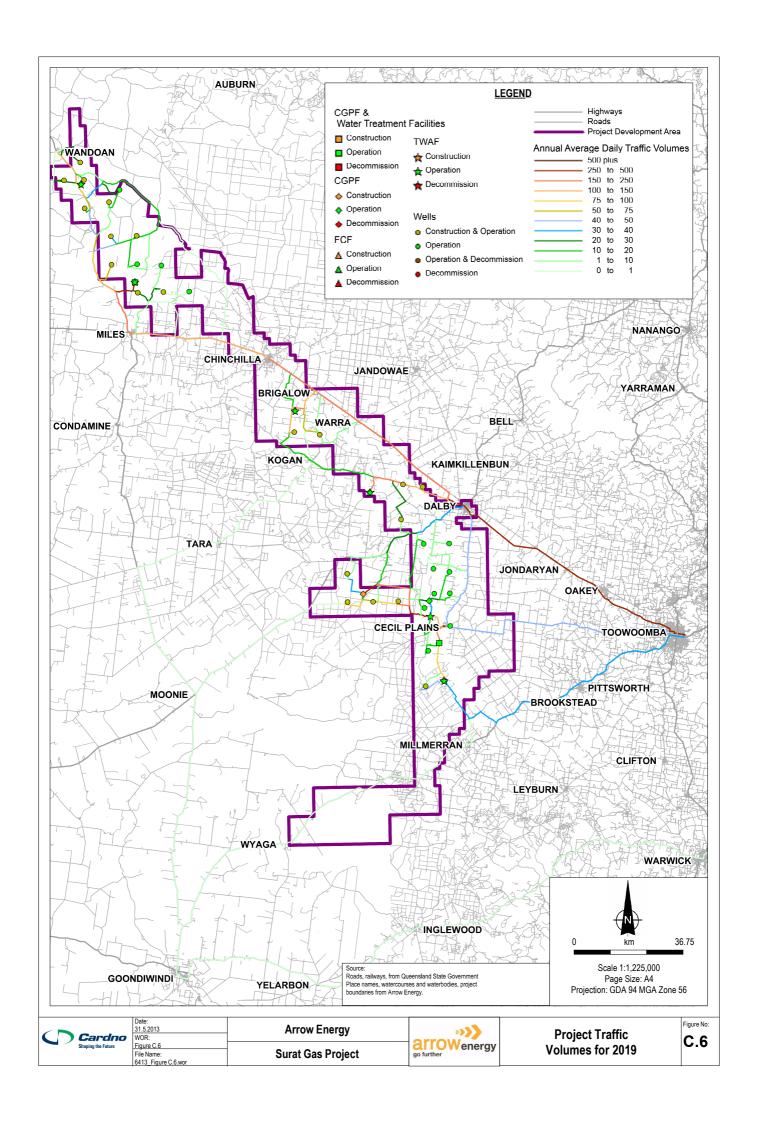


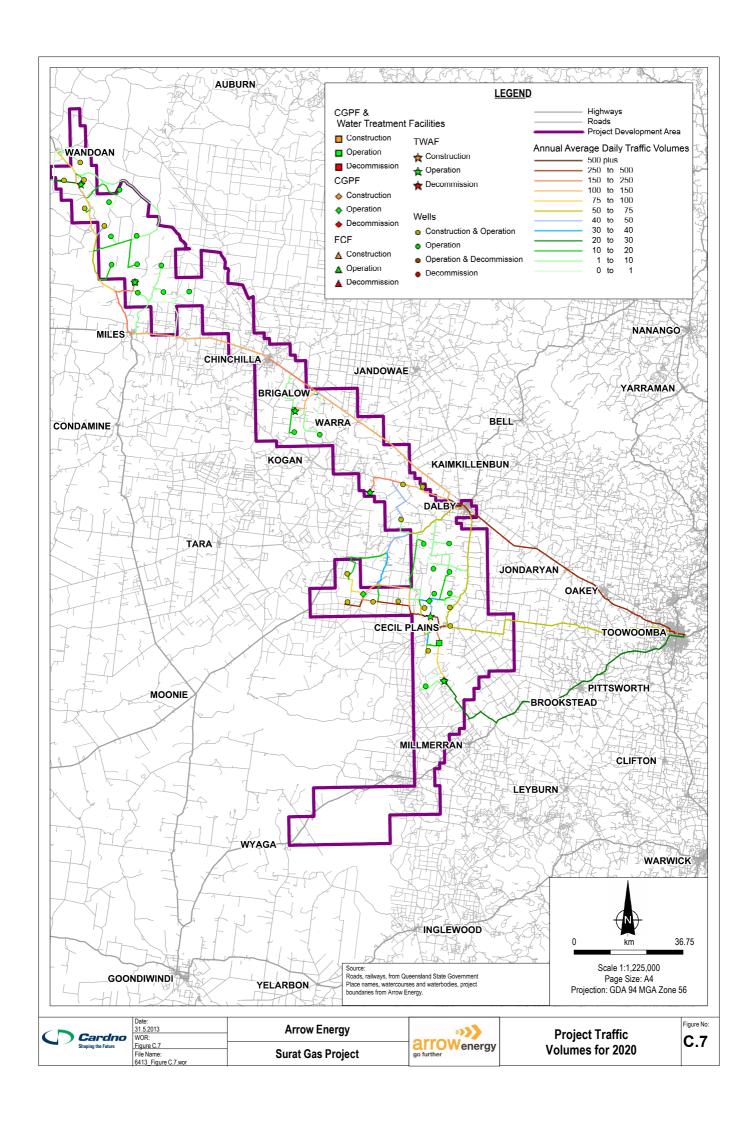

[Appendix B is available on request]

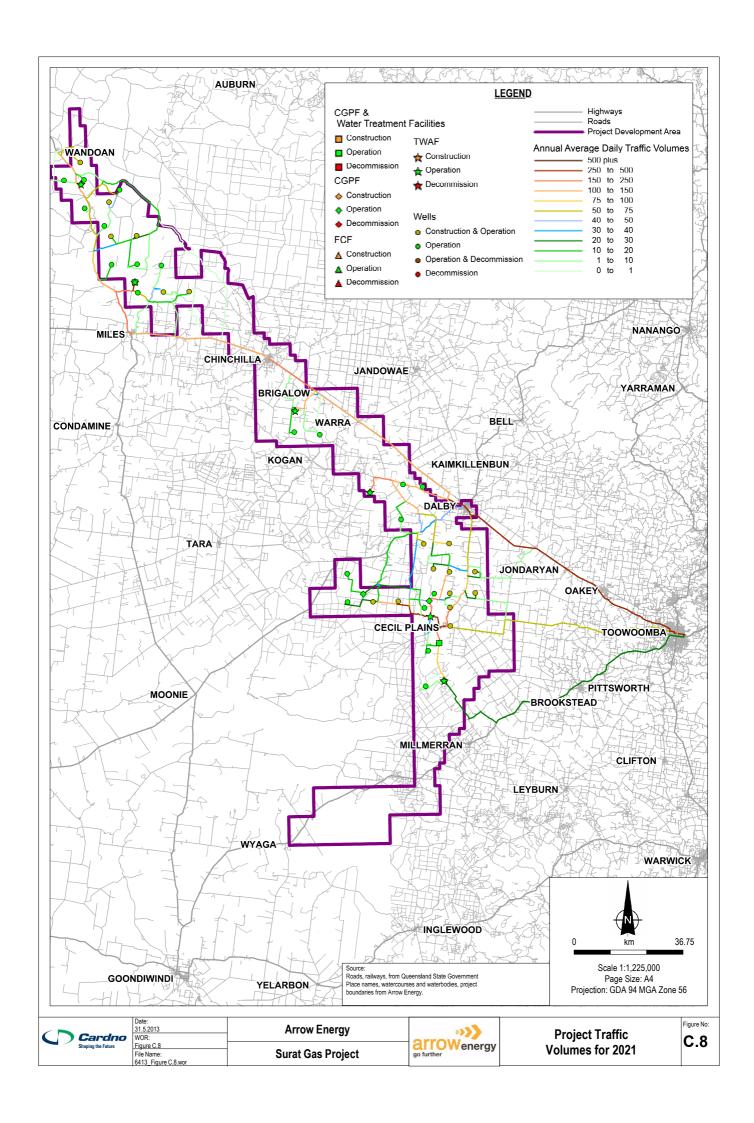

Surat Gas Project SREIS

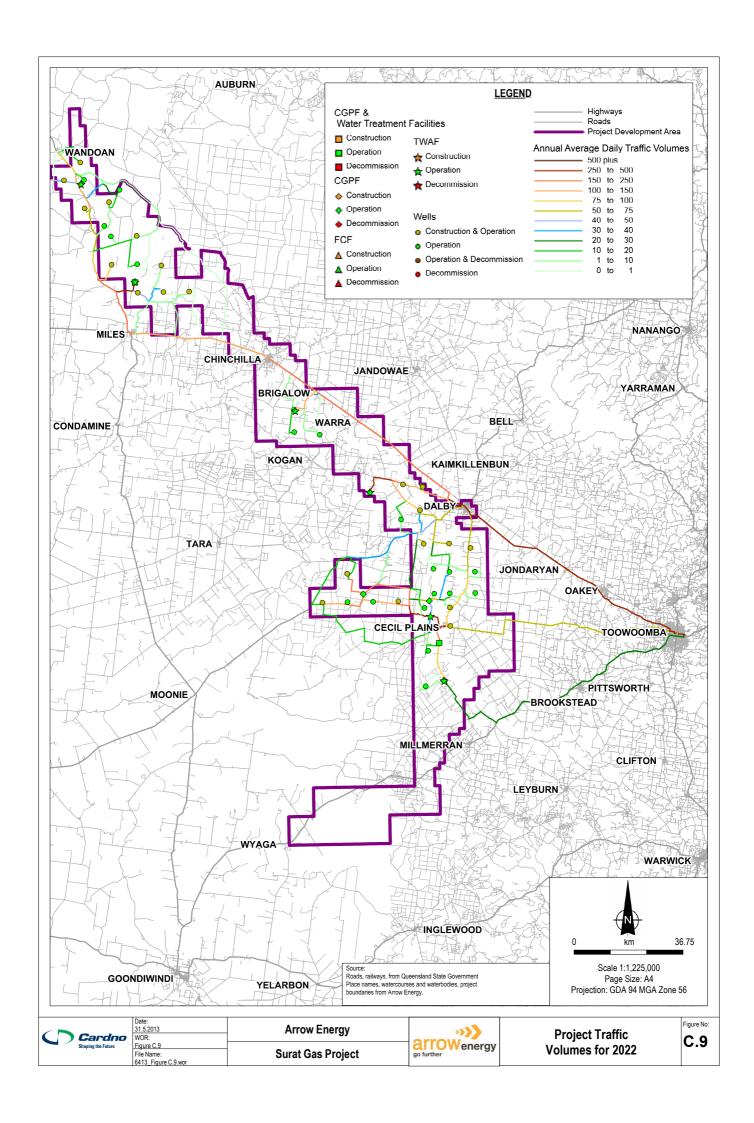

APPENDIX C
Annual Project Traffic Volume Forecasts

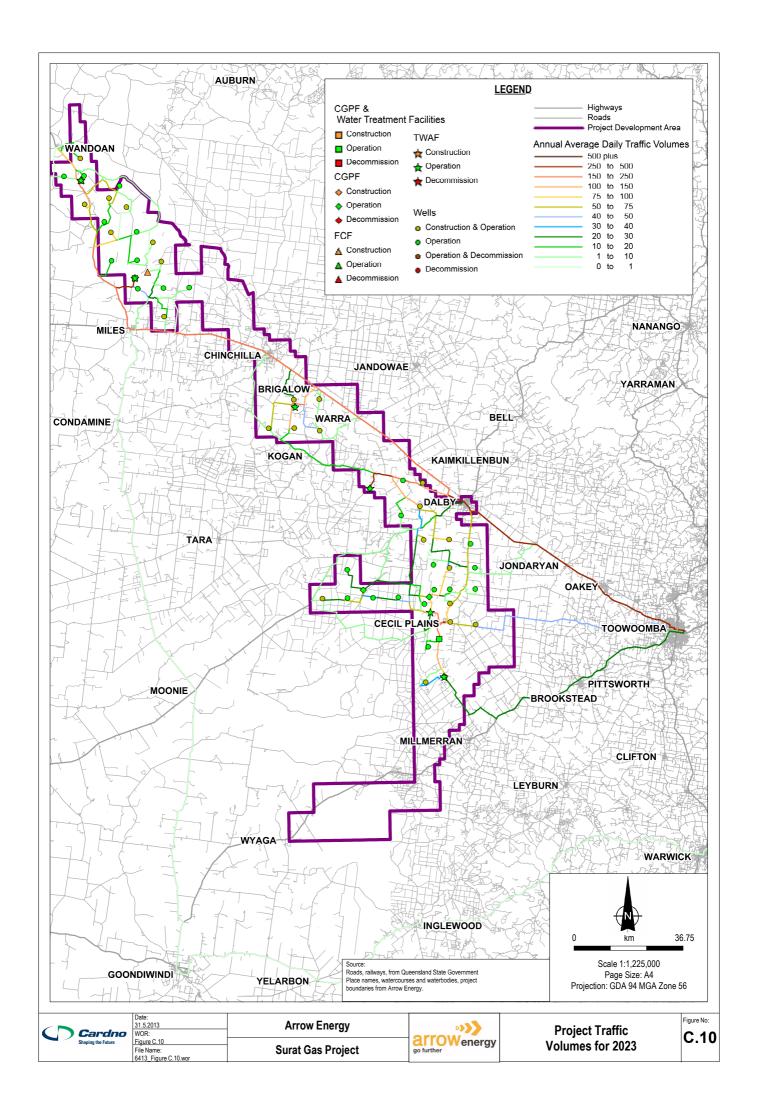


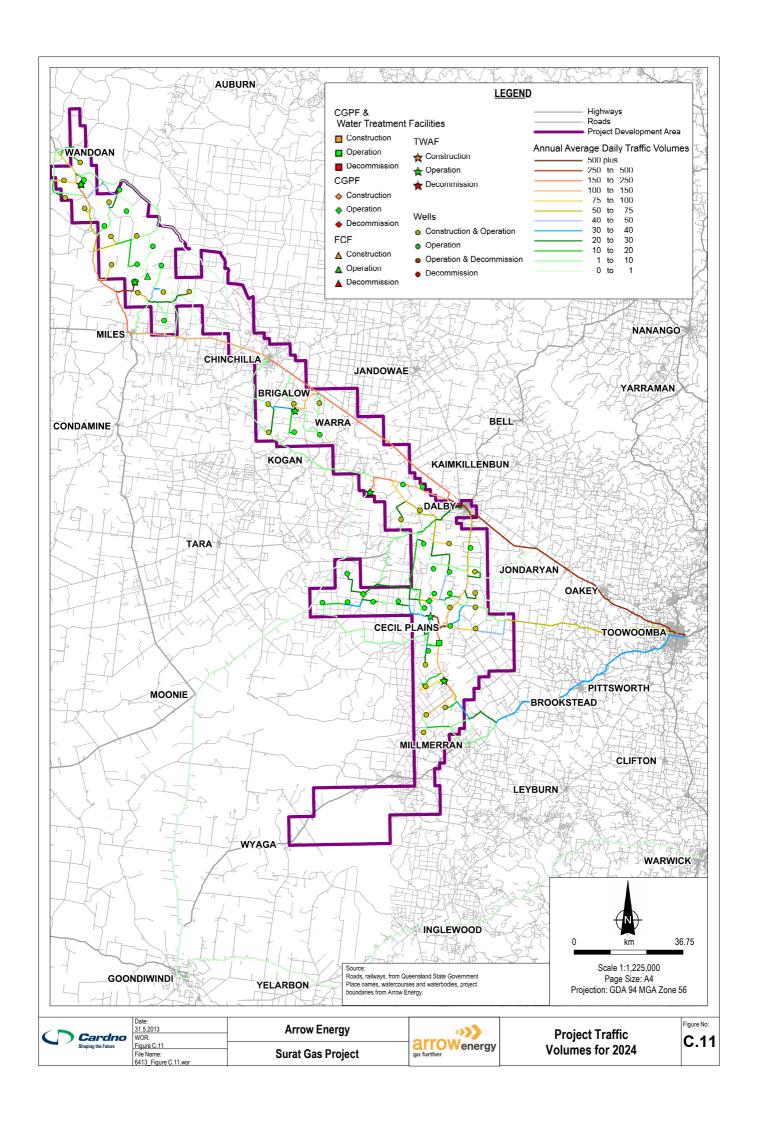


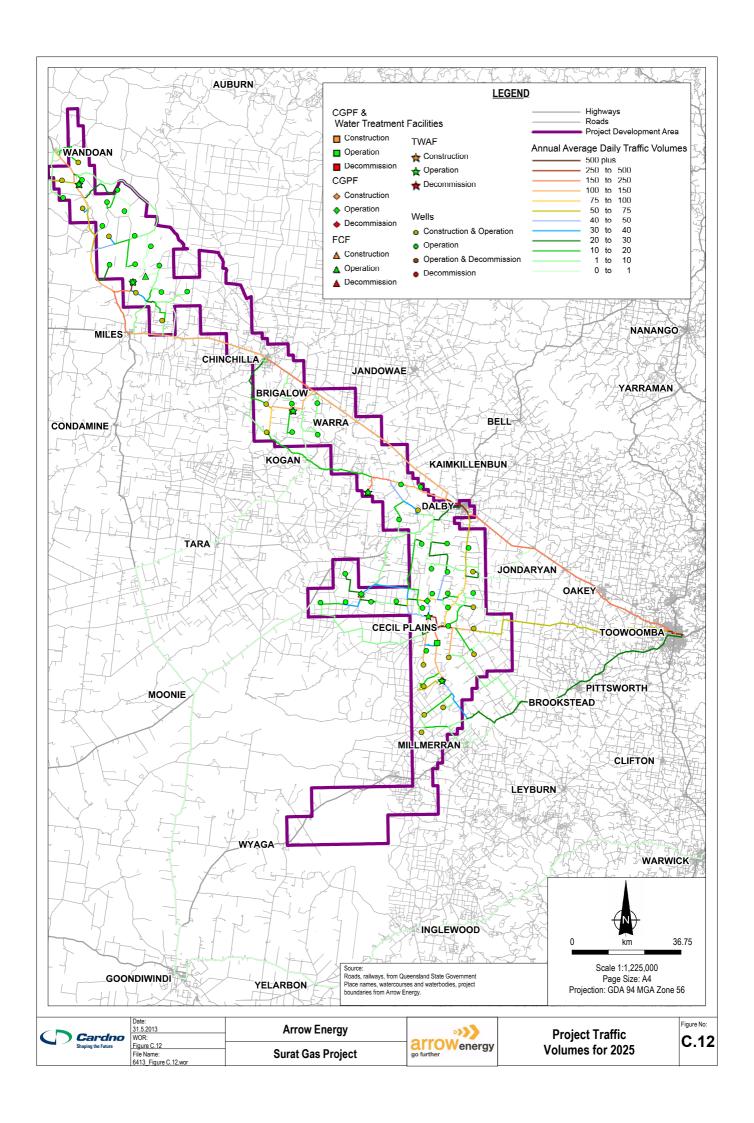


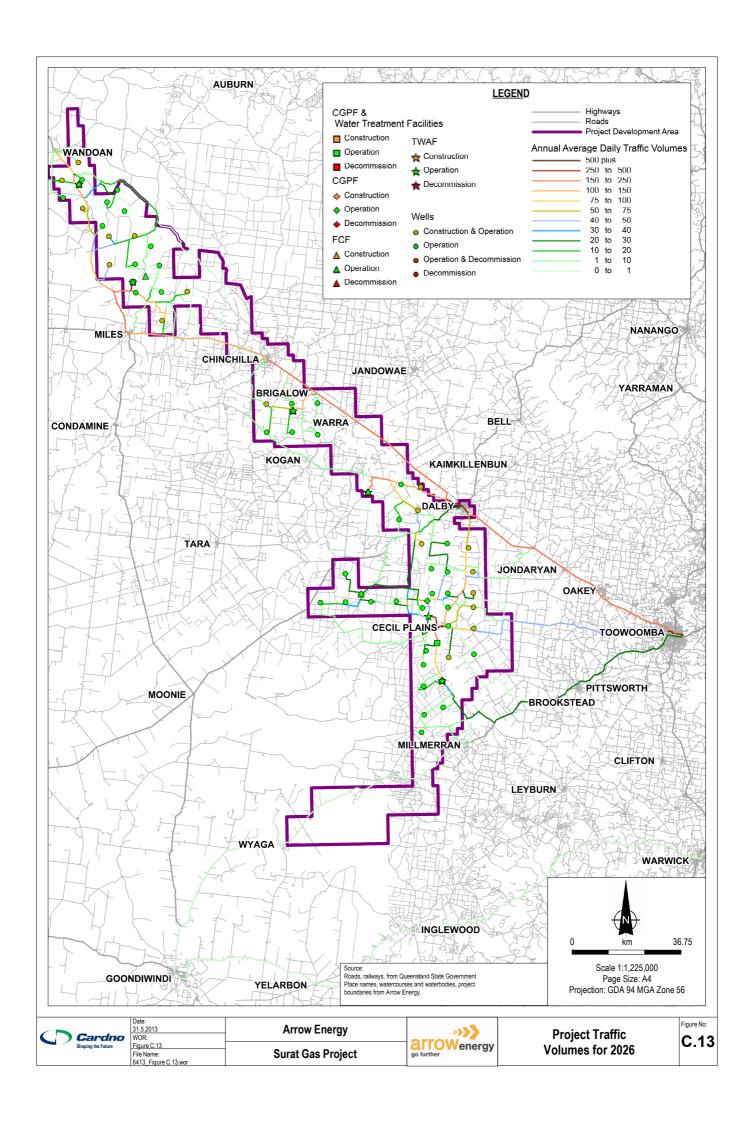


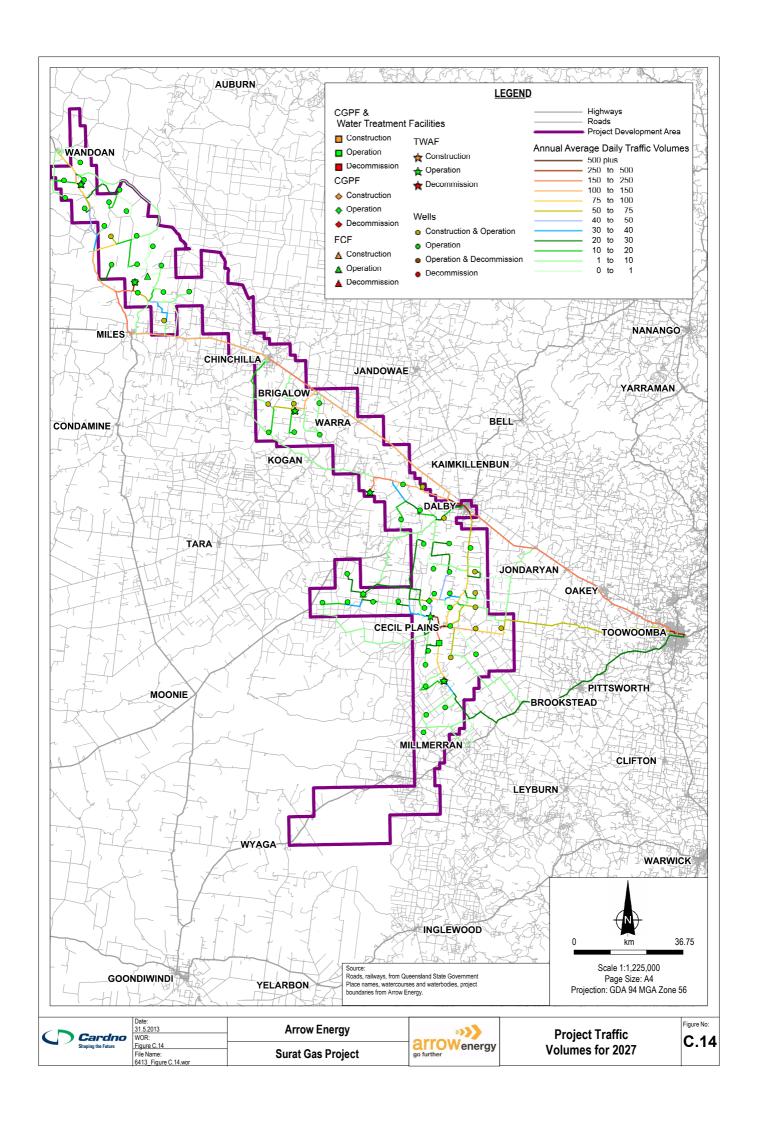


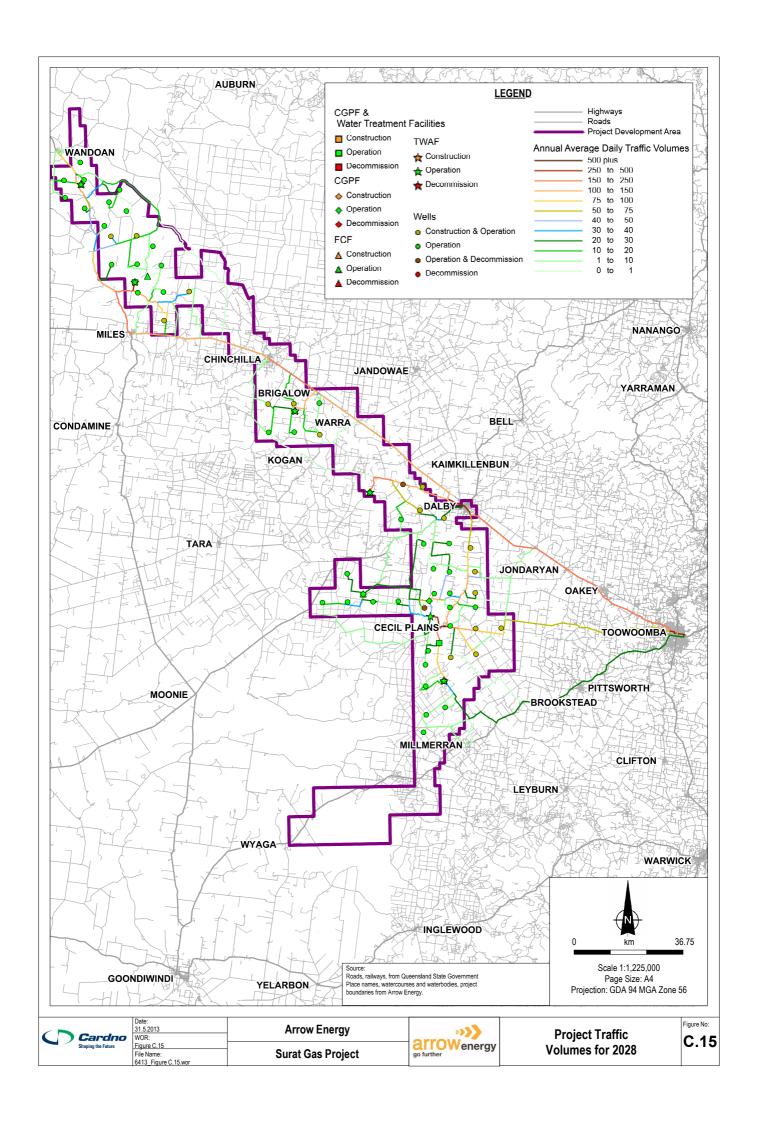


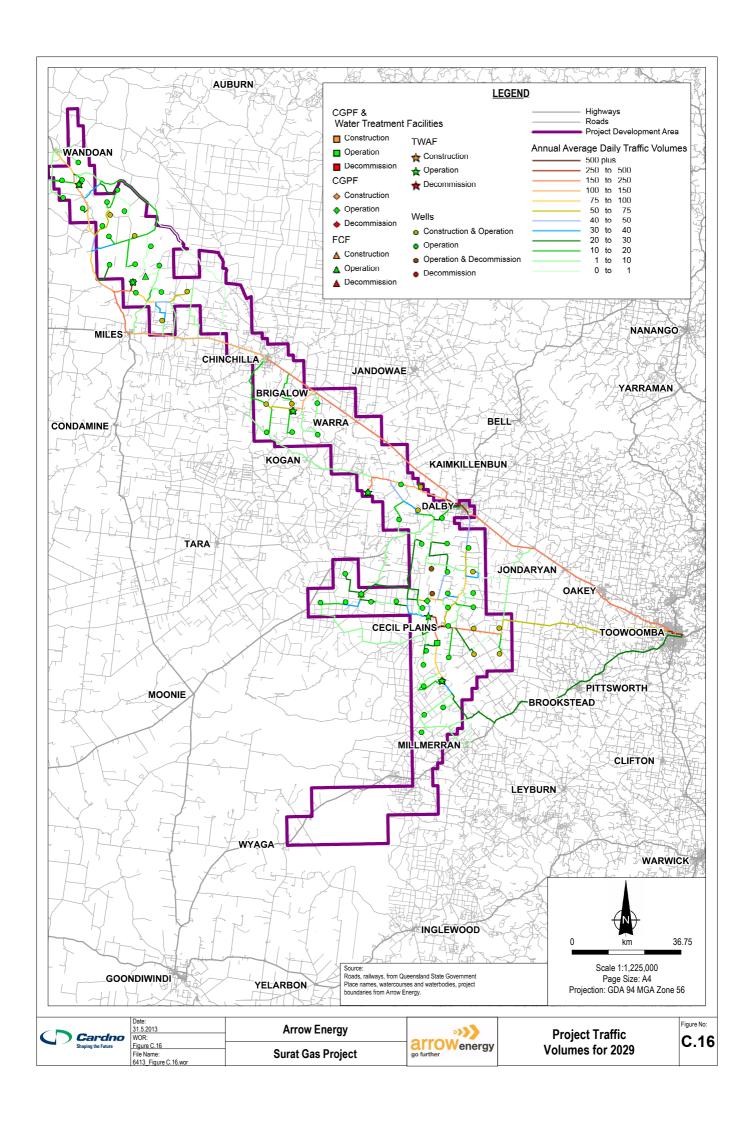


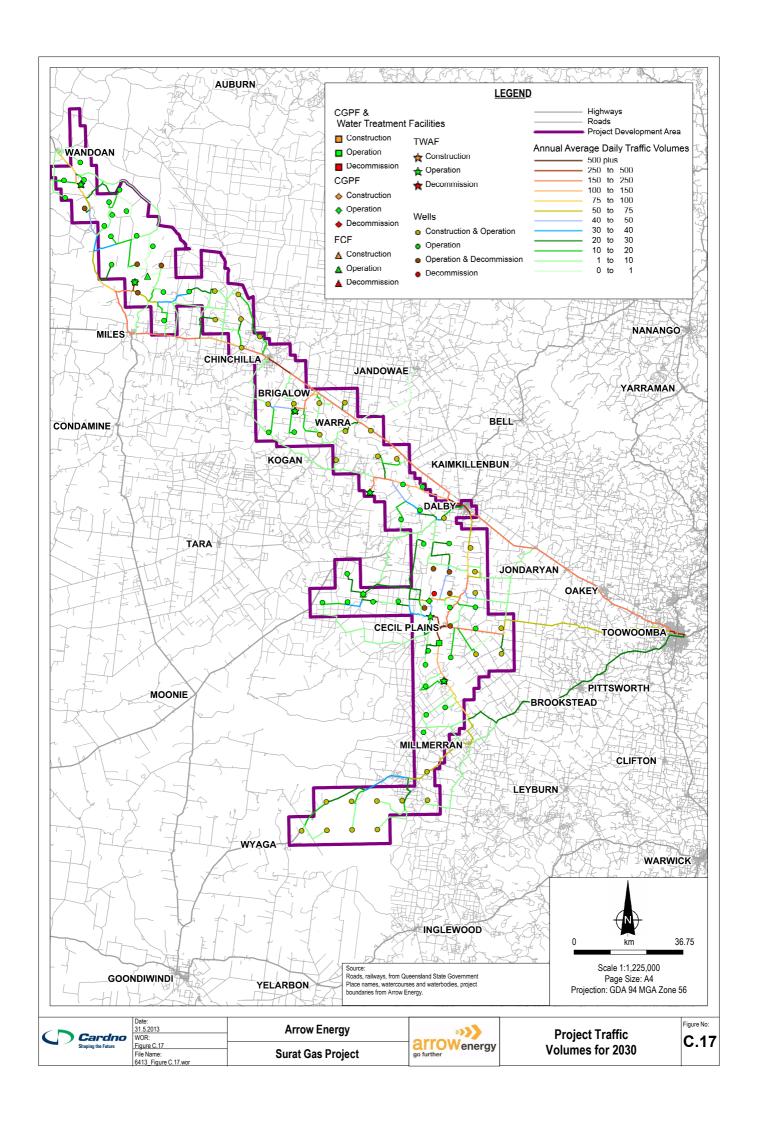


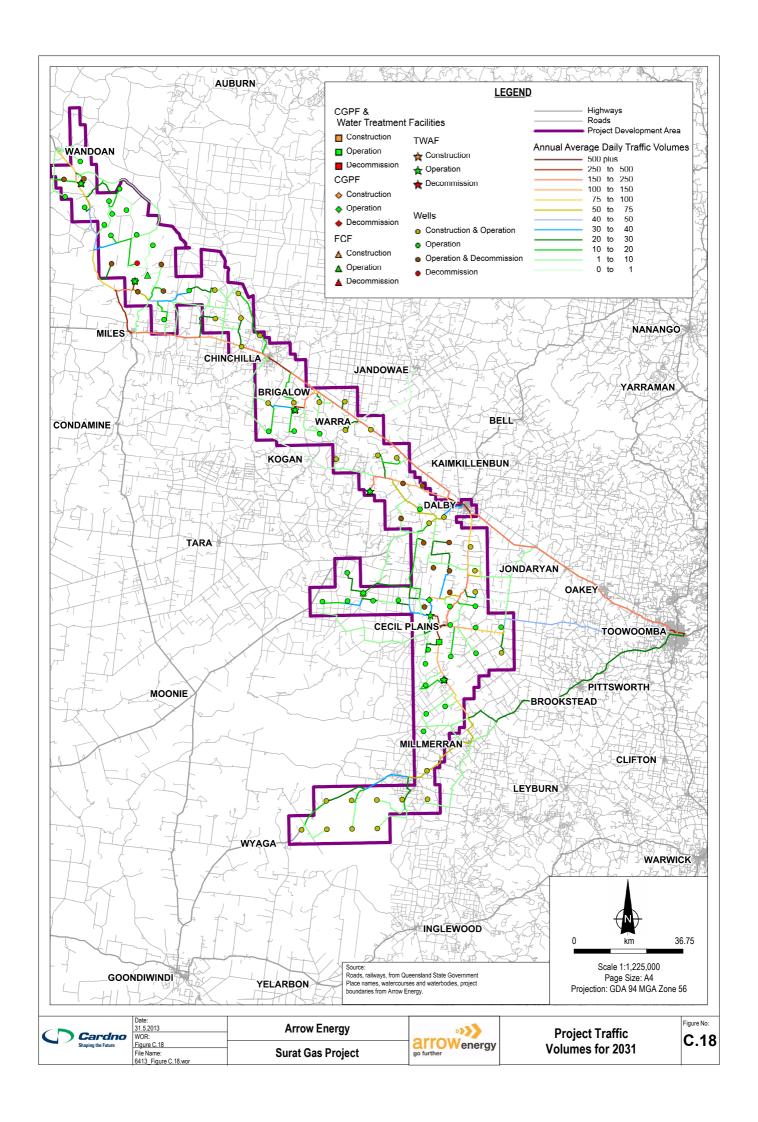


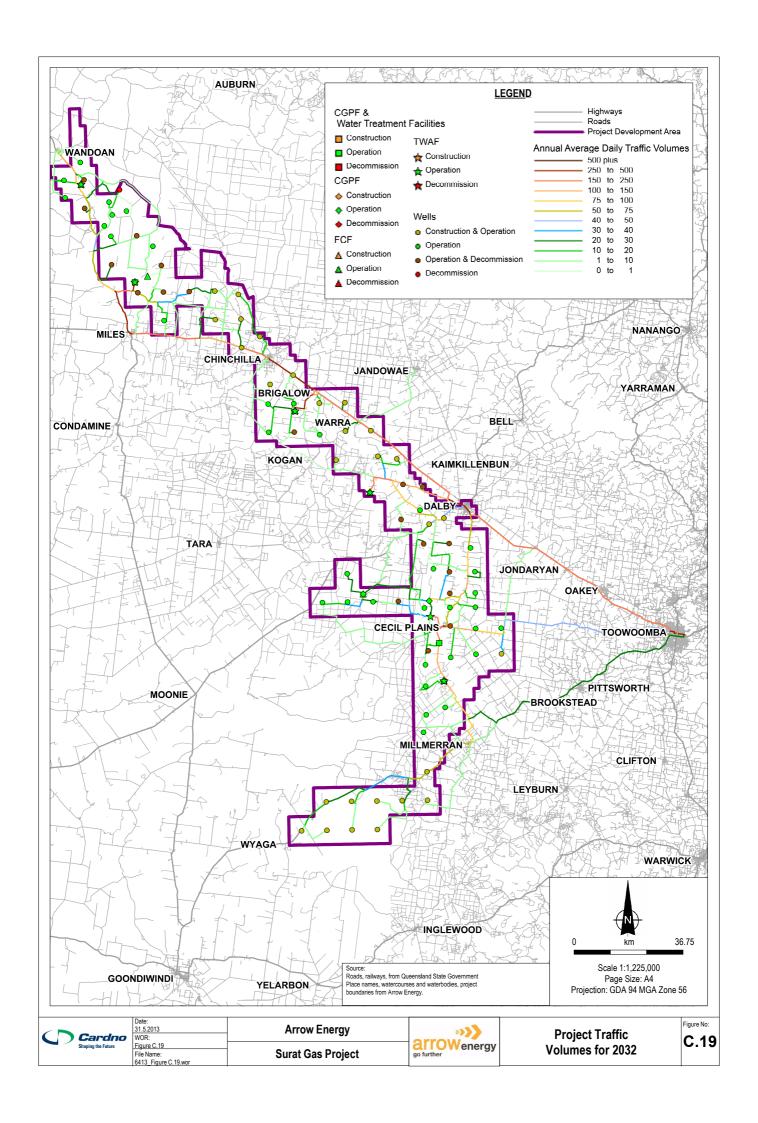


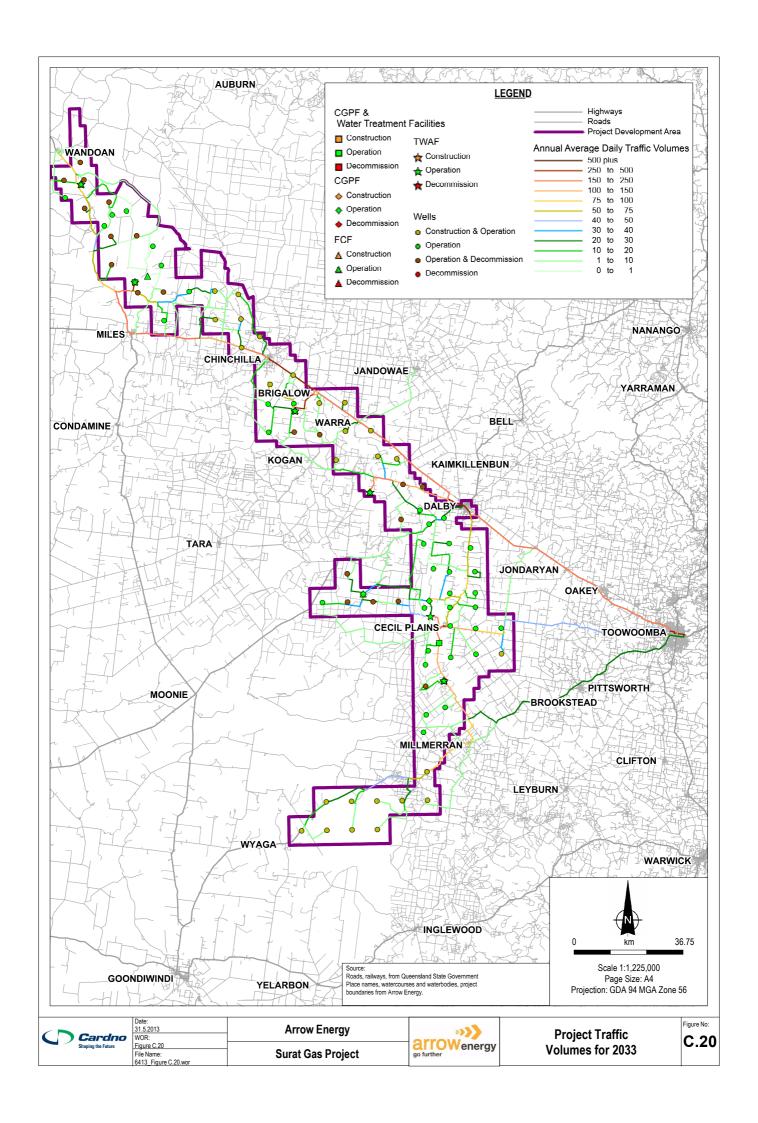


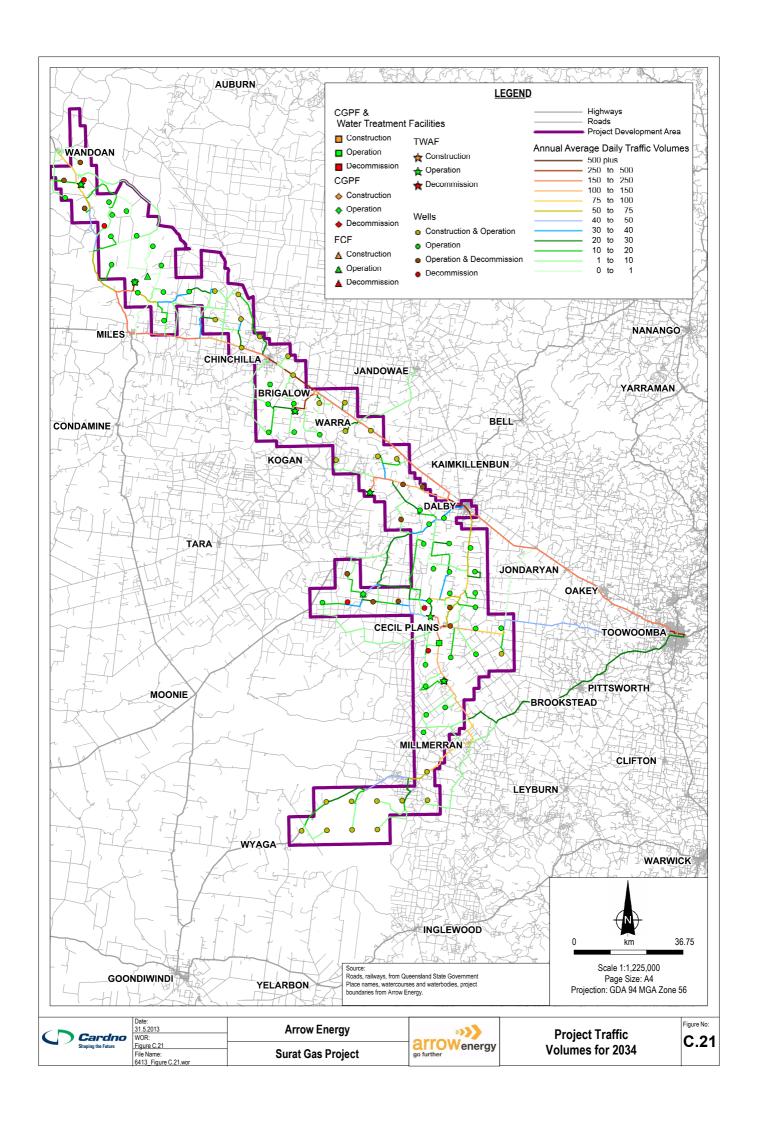


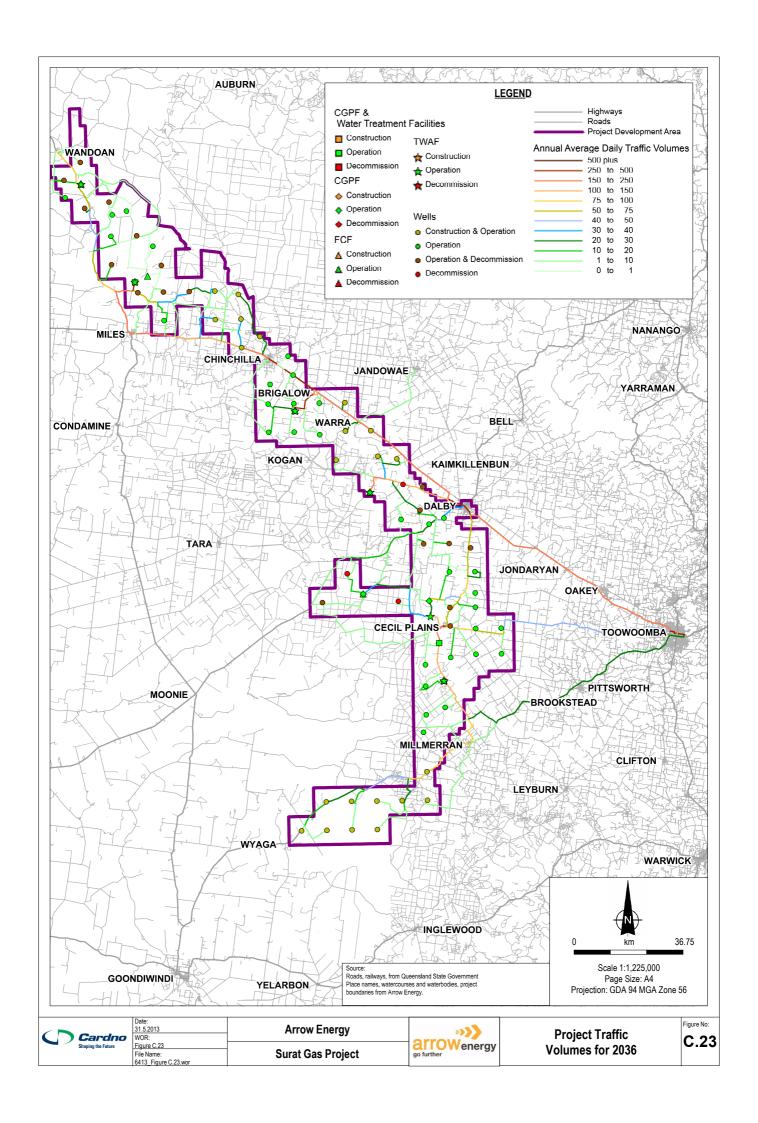


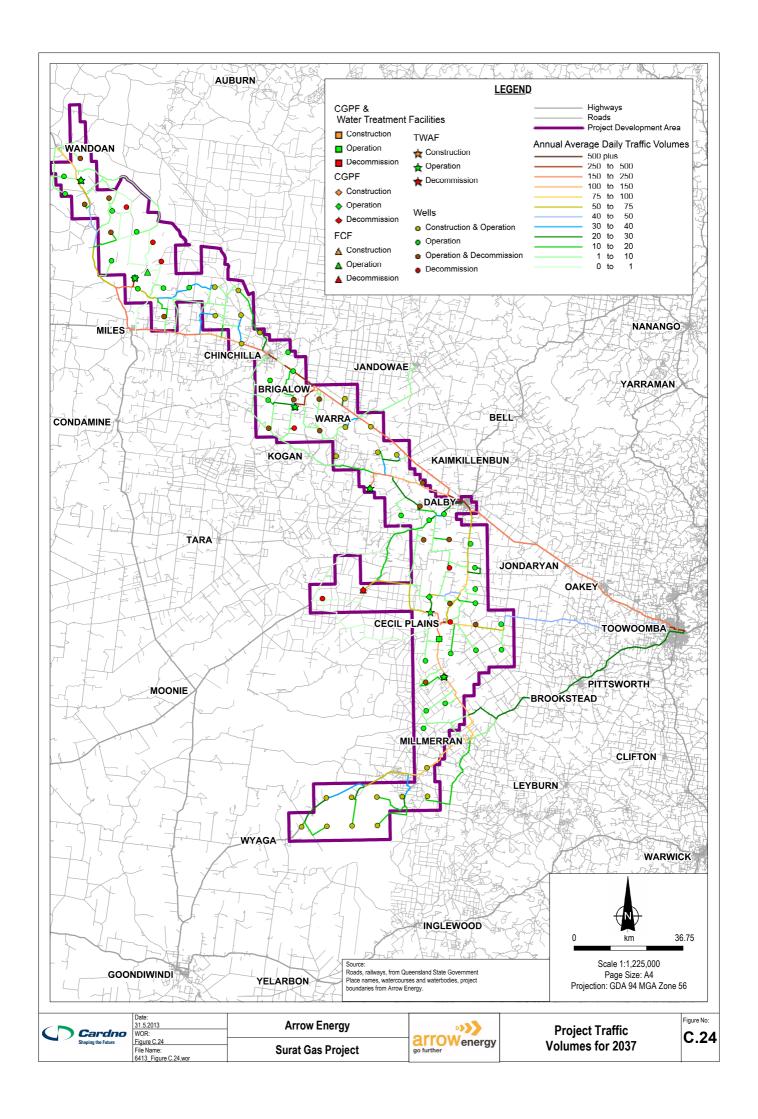


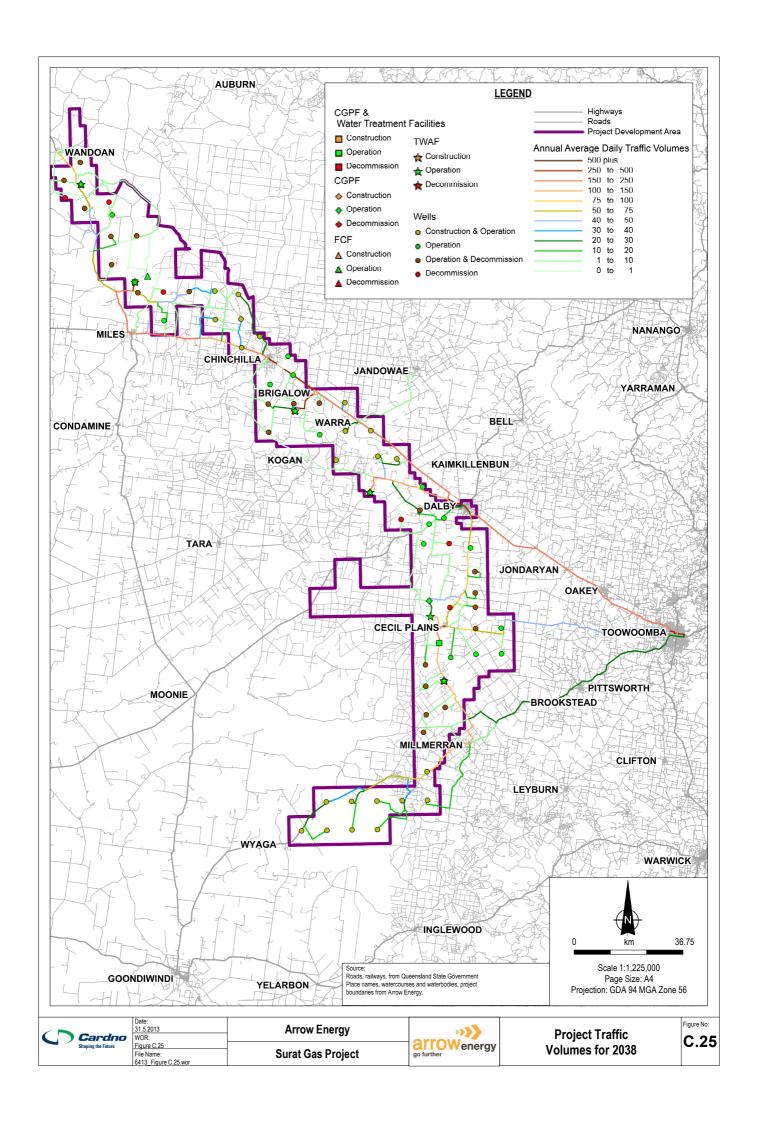


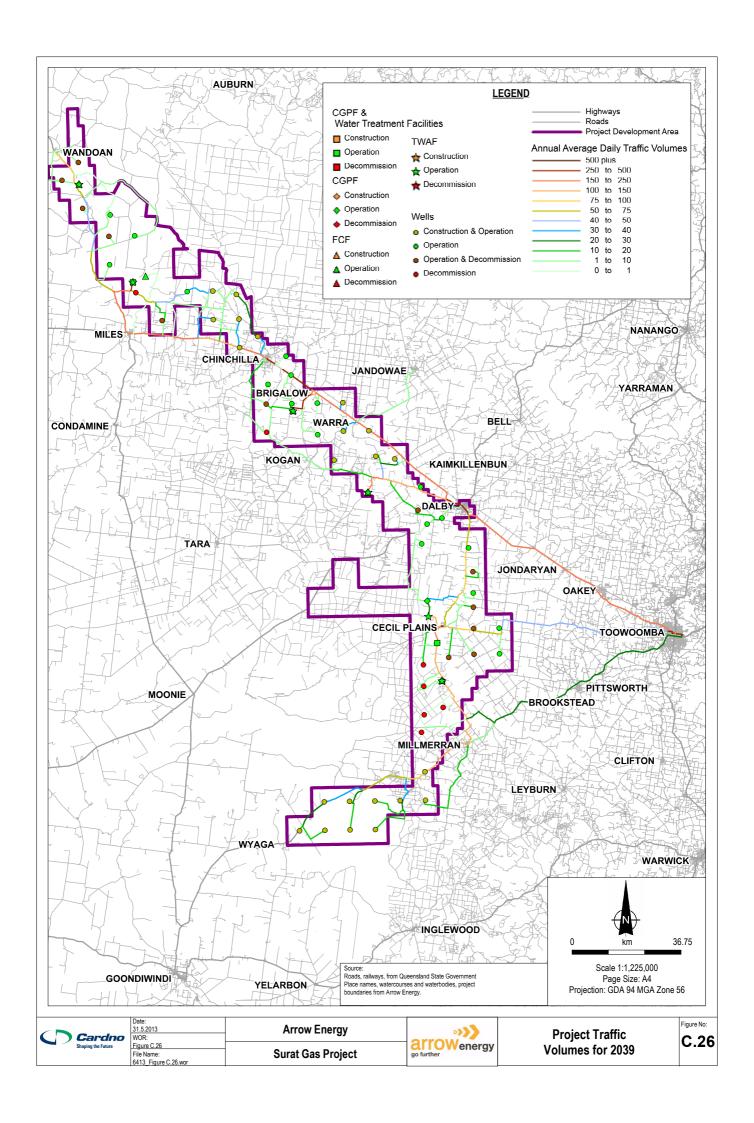


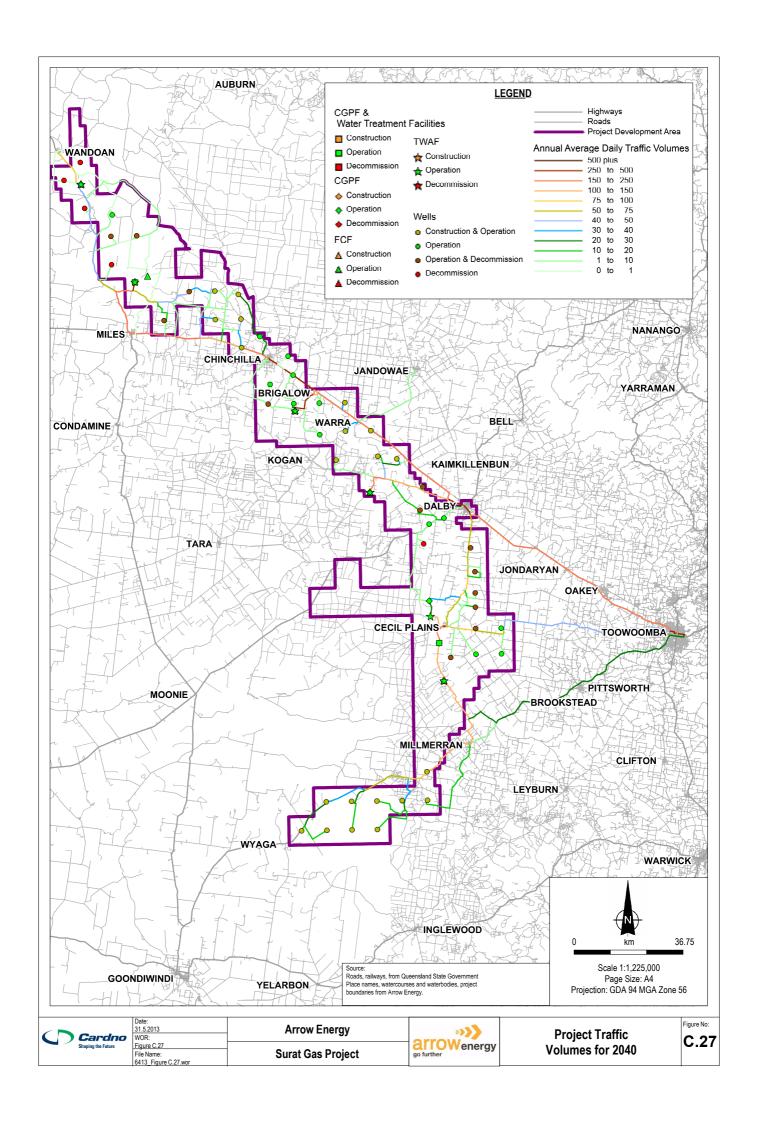




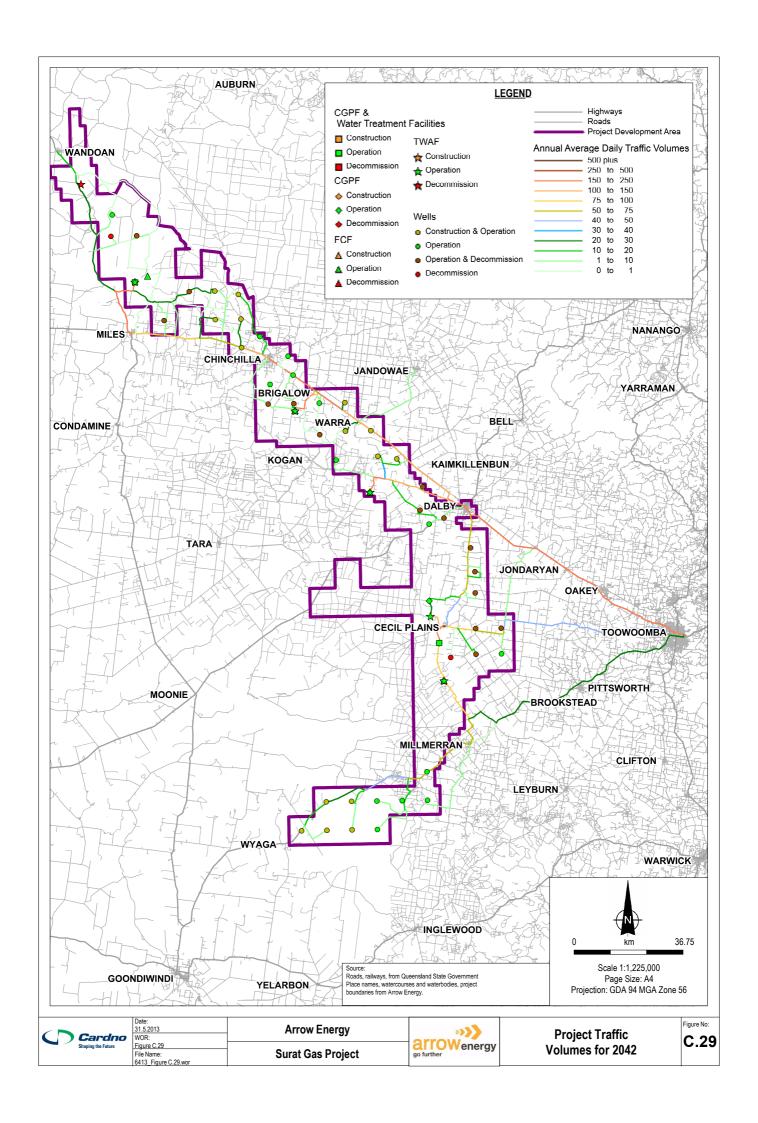


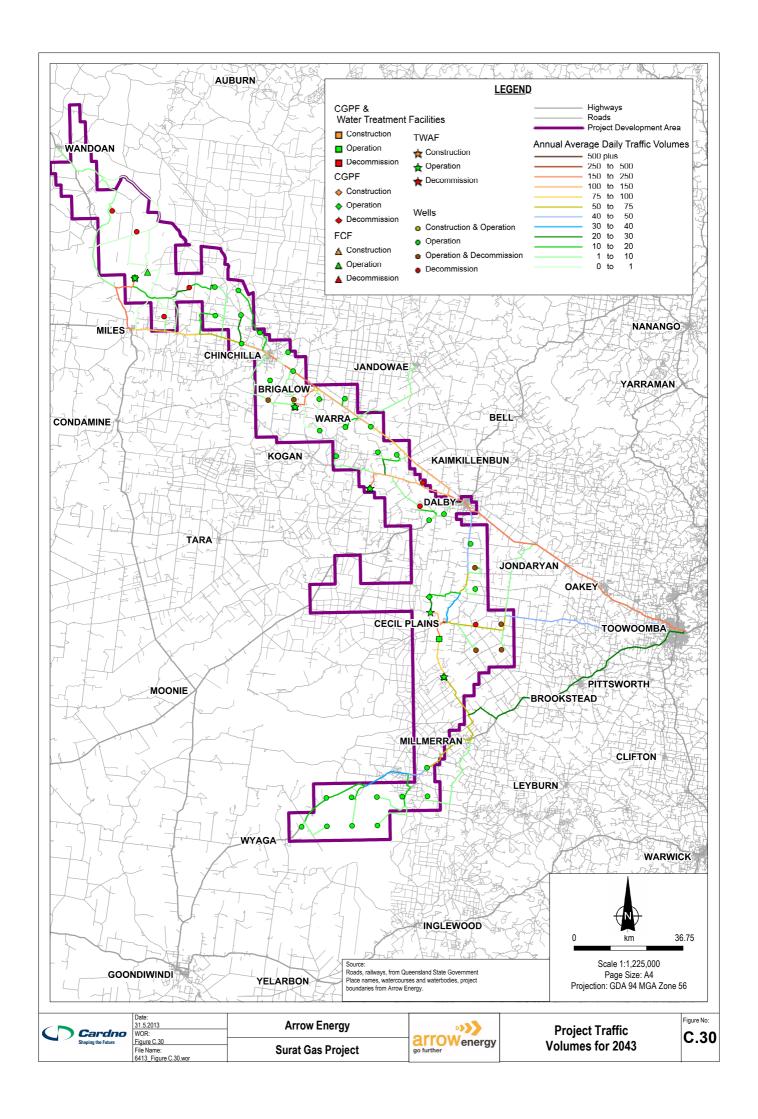


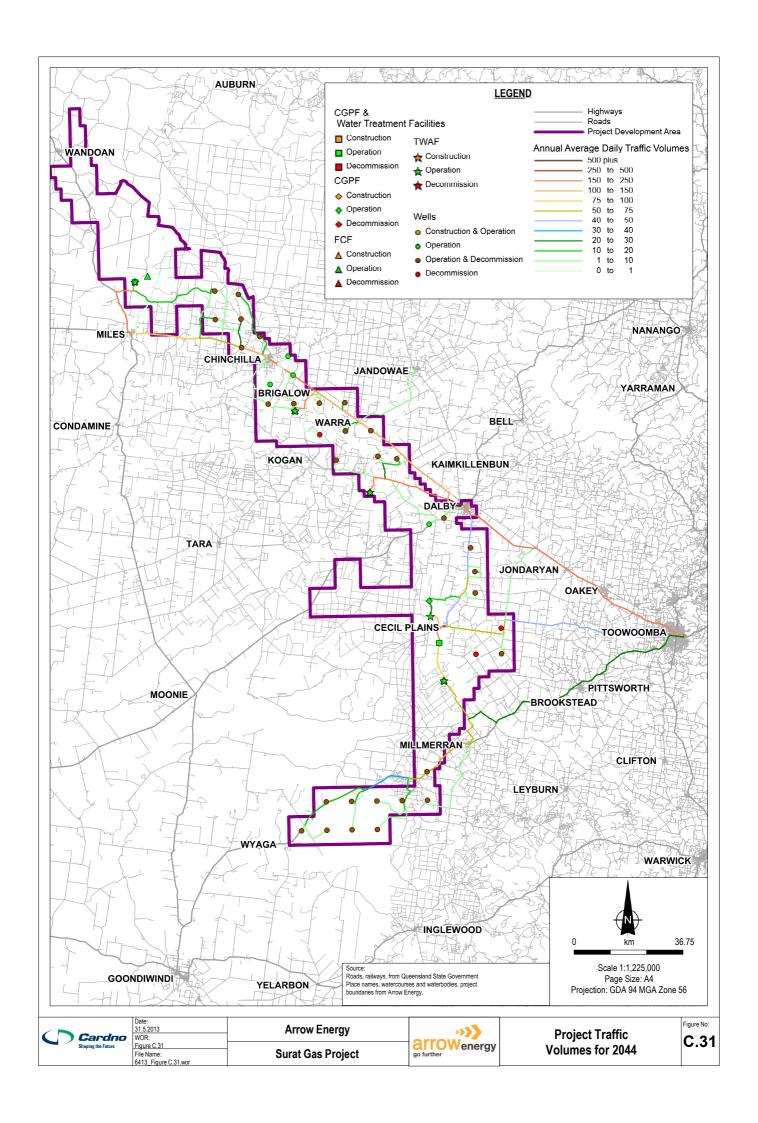


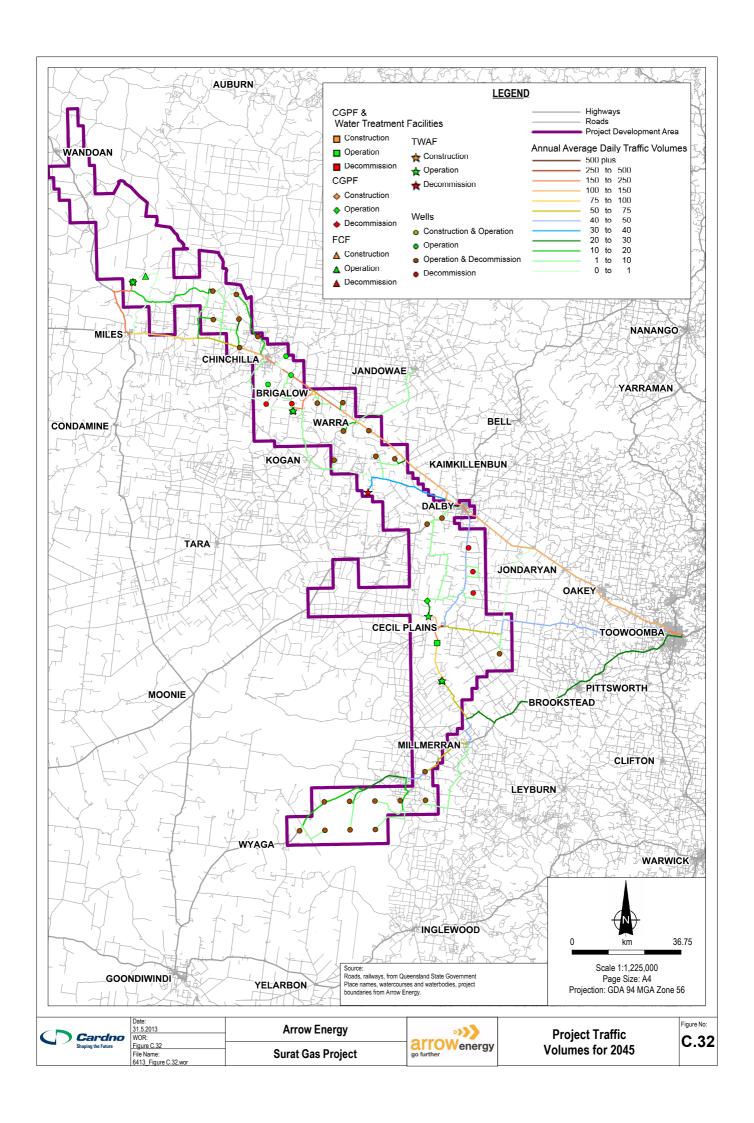


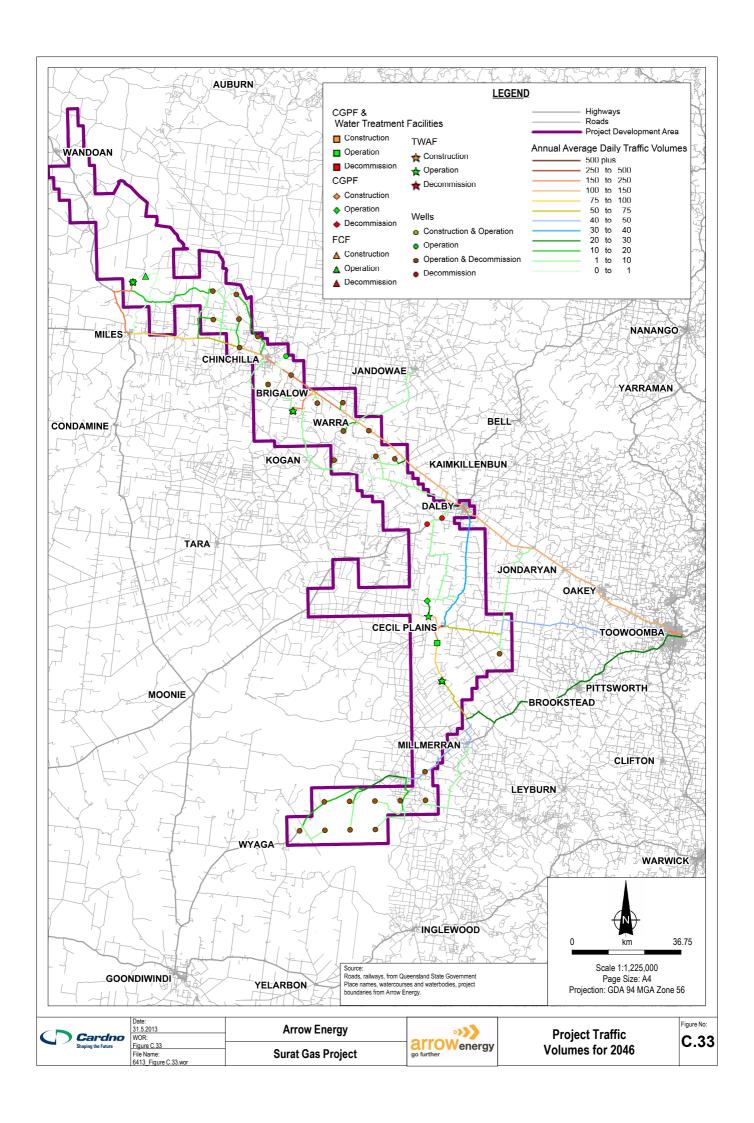


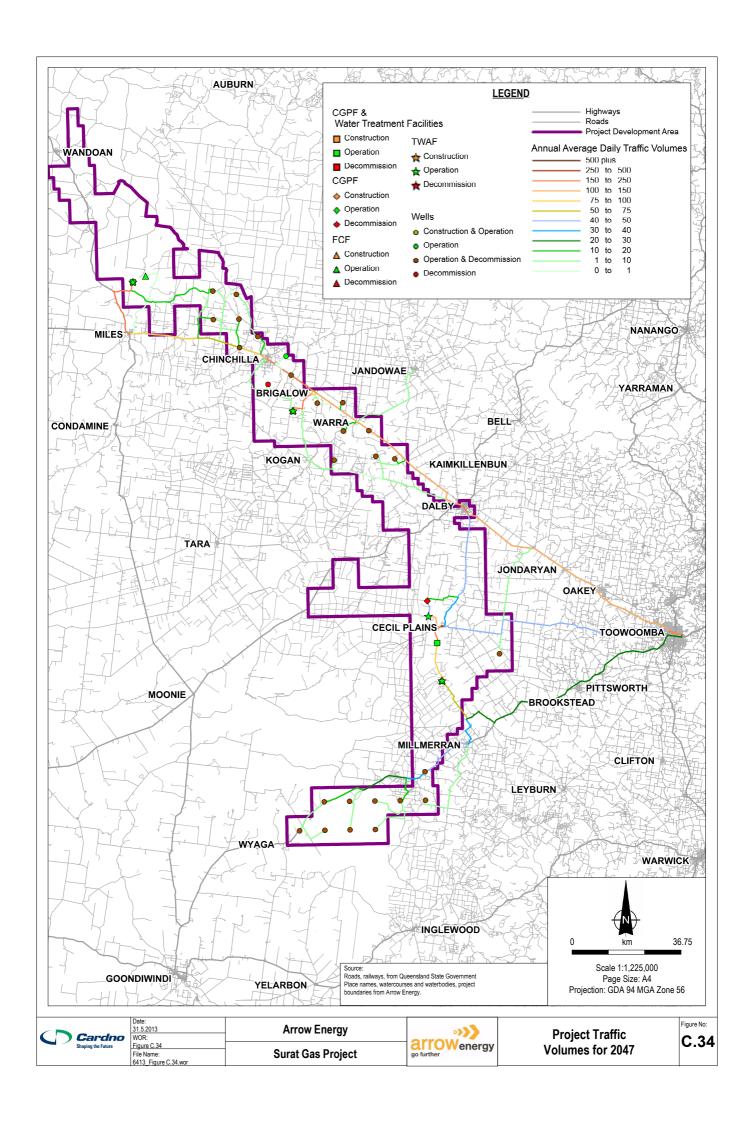


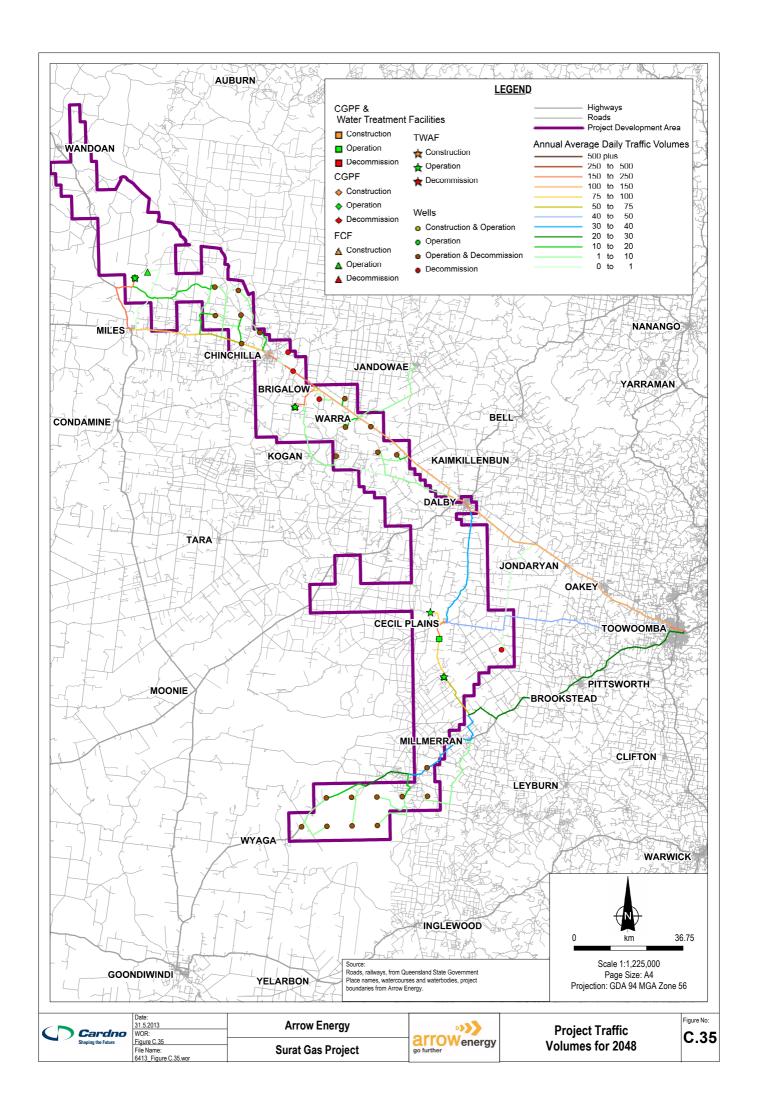


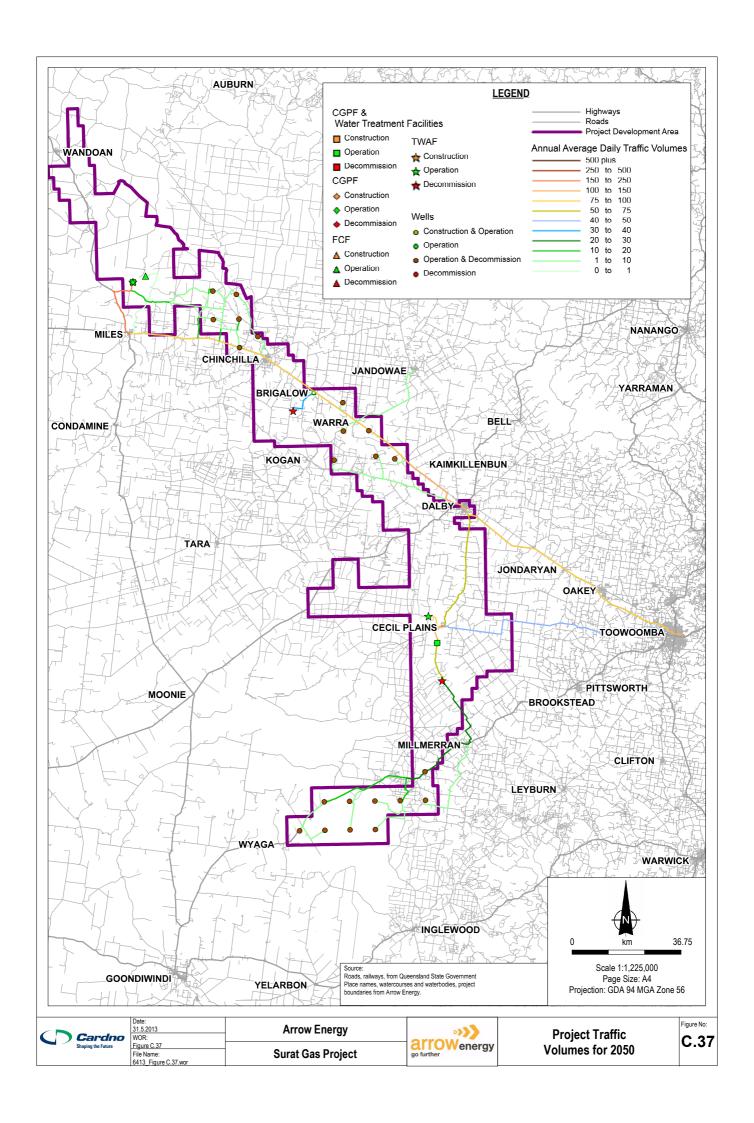


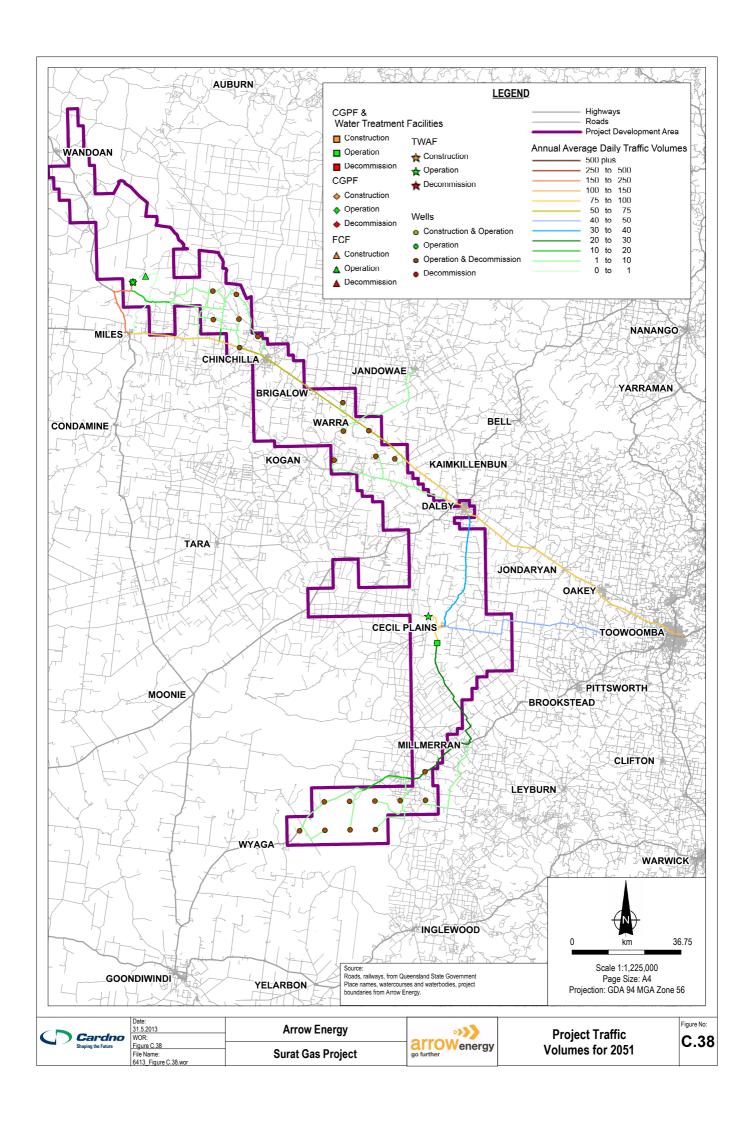


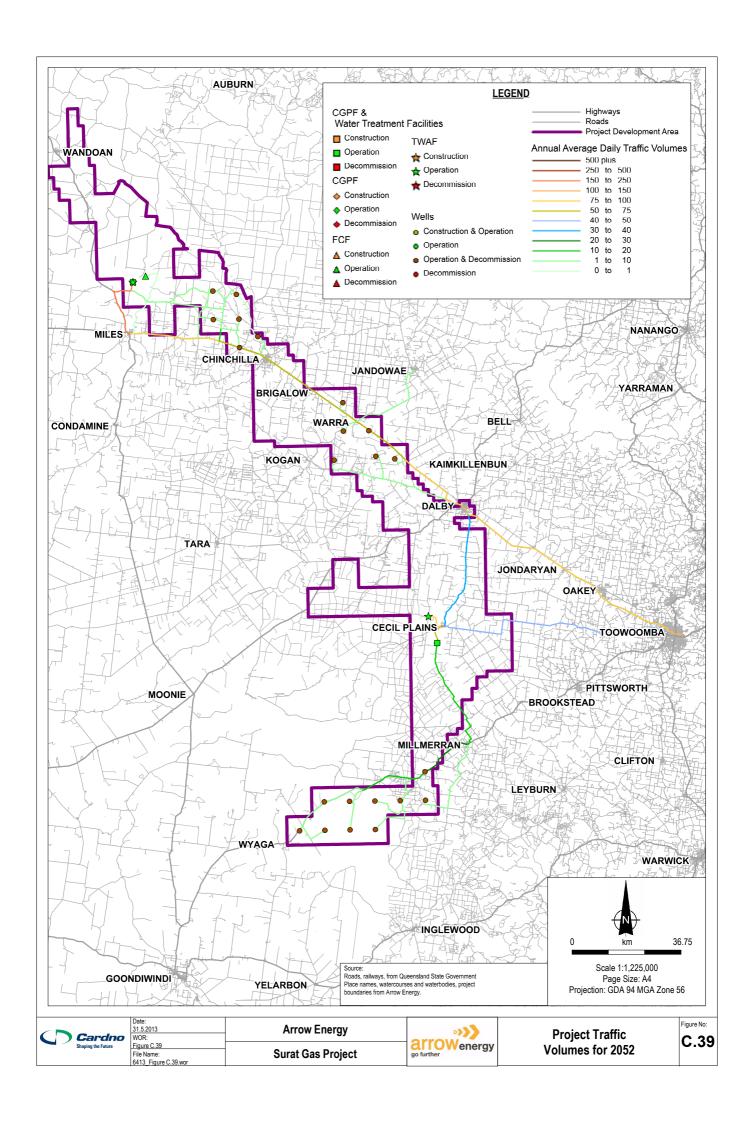


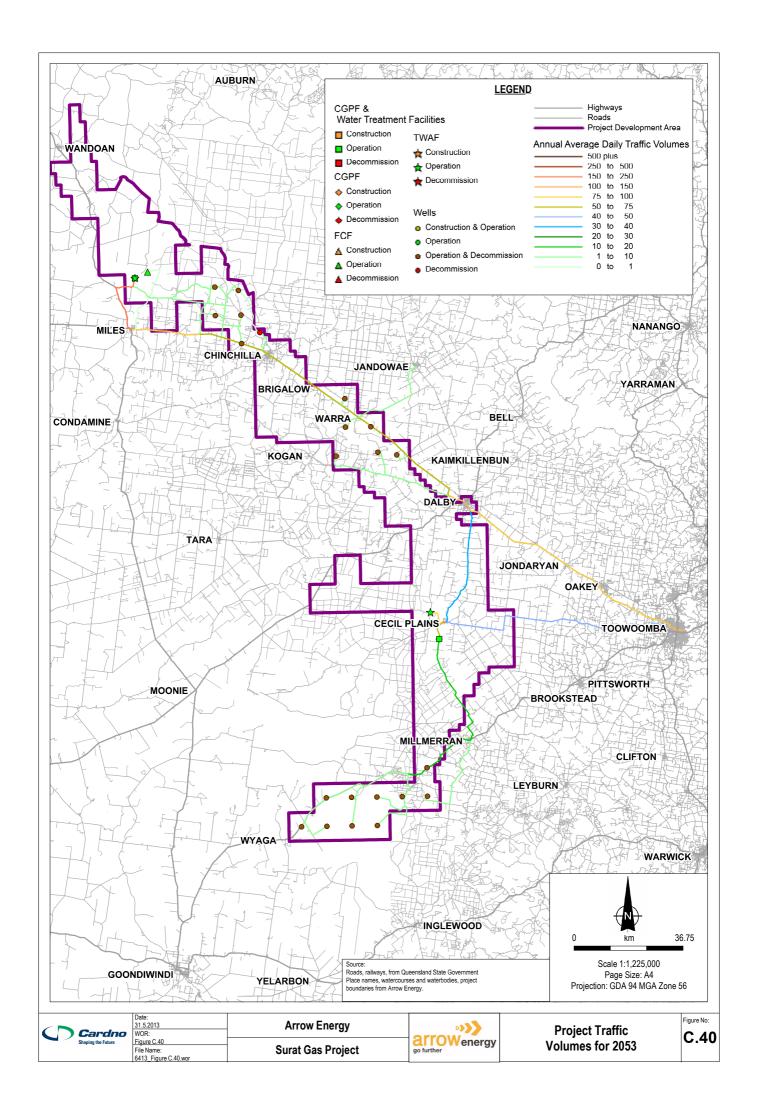


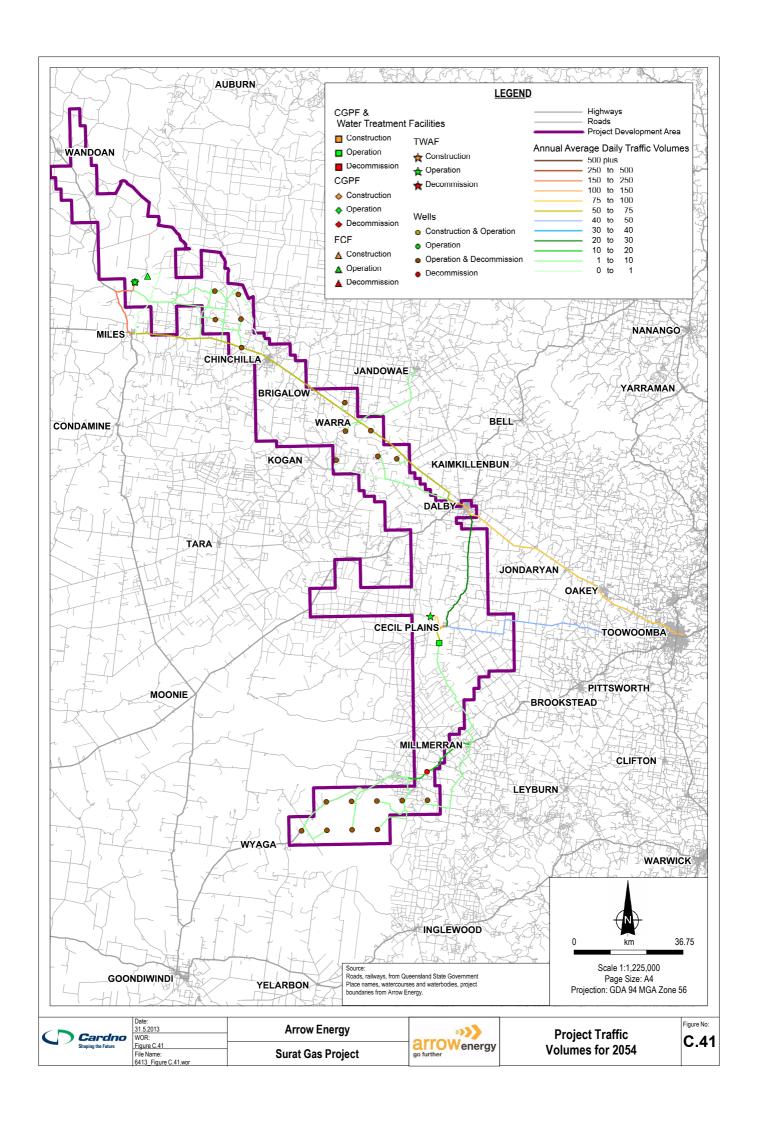


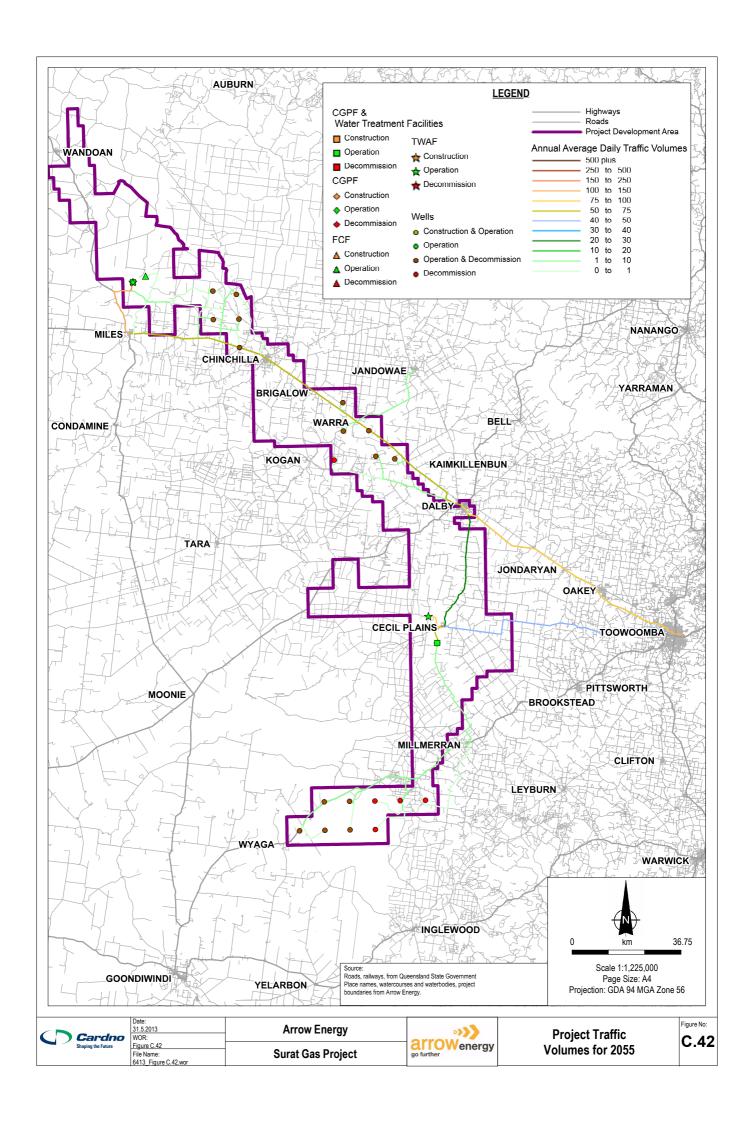


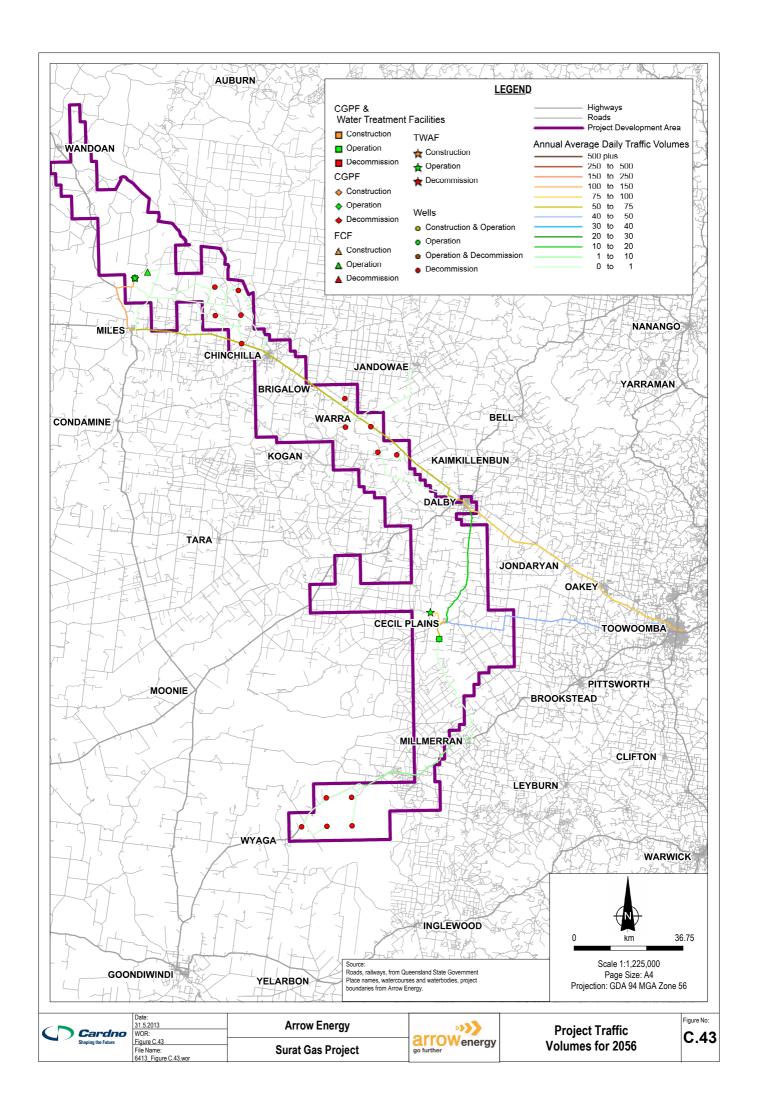


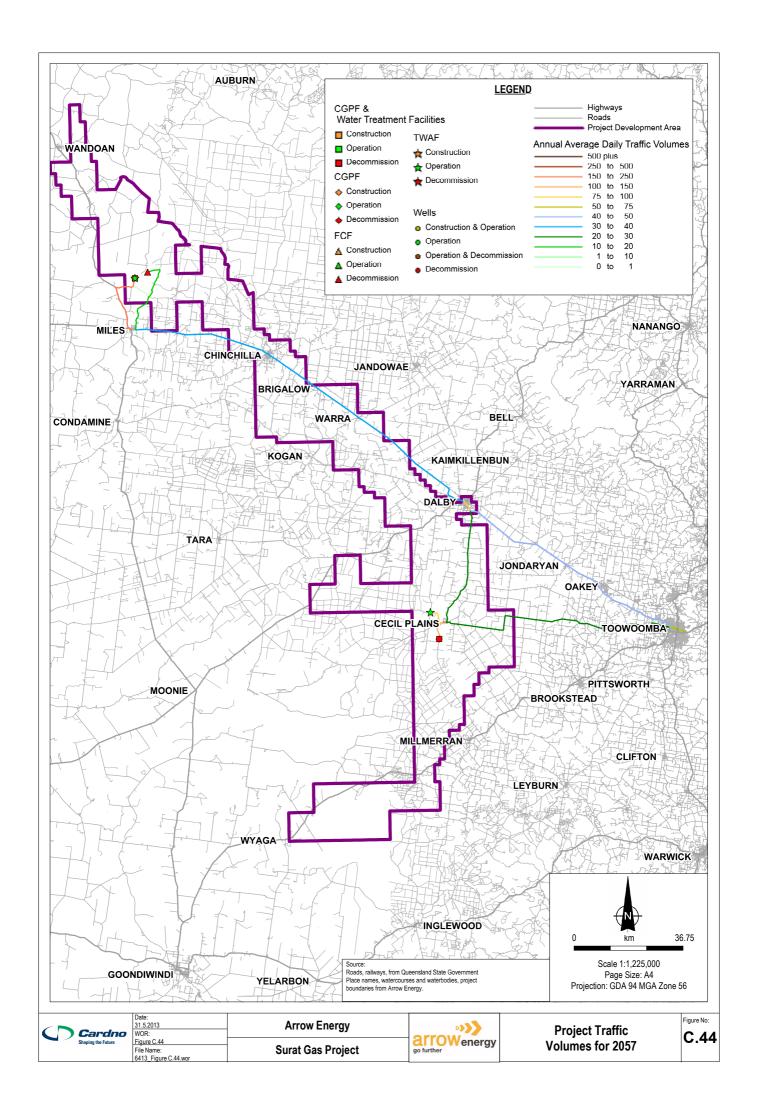


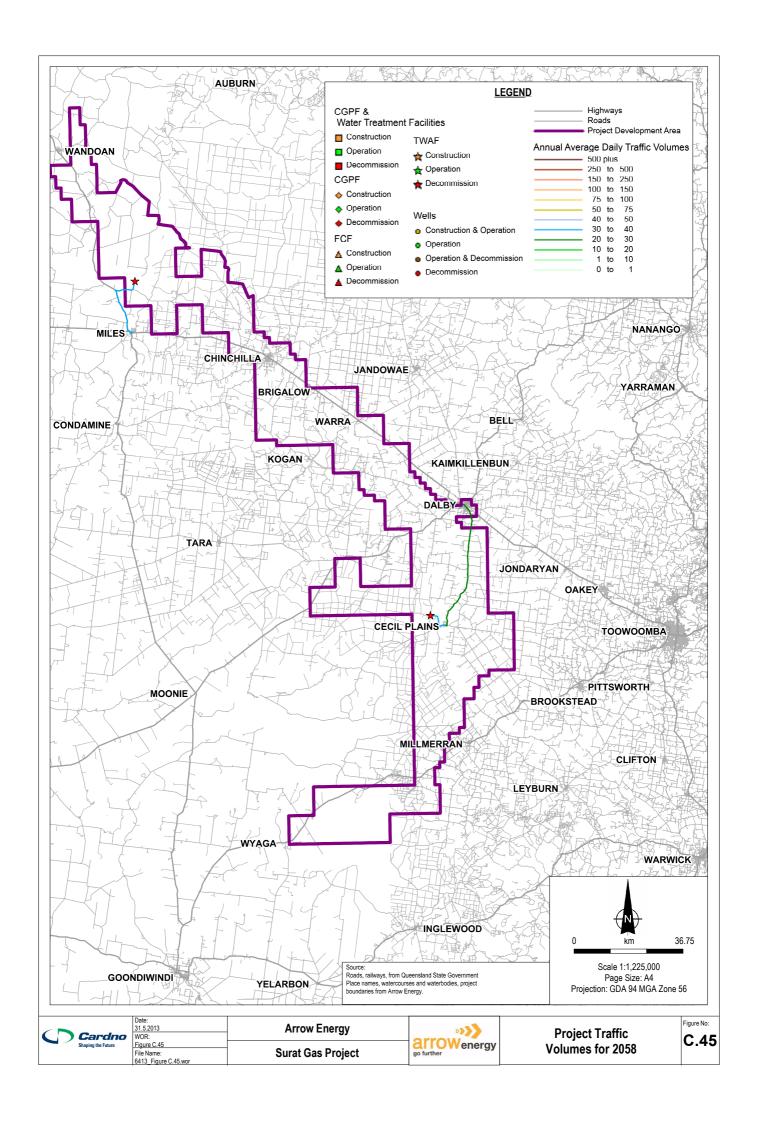


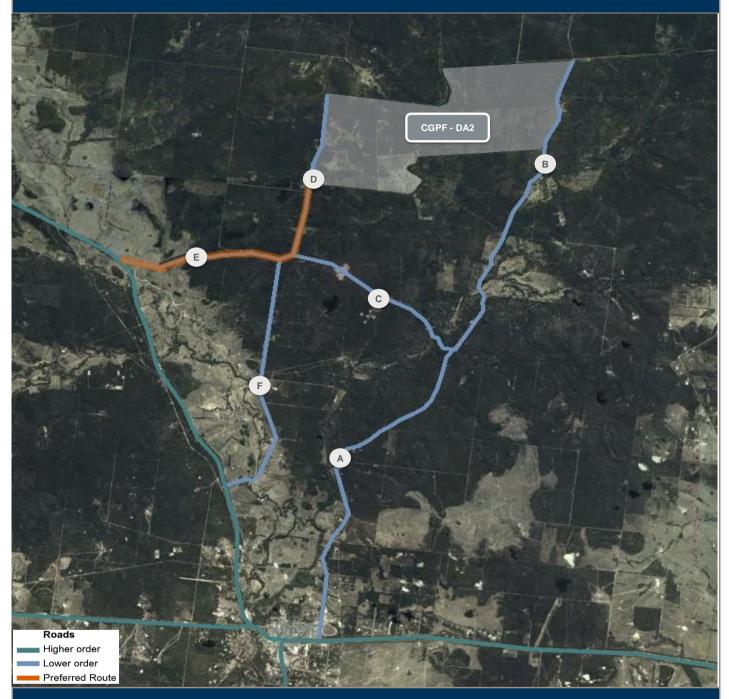











Surat Gas Project SREIS

APPENDIX D Case Studies: Fitness For Use

Assessment

LOCALITY PLAN

KEY ROADS

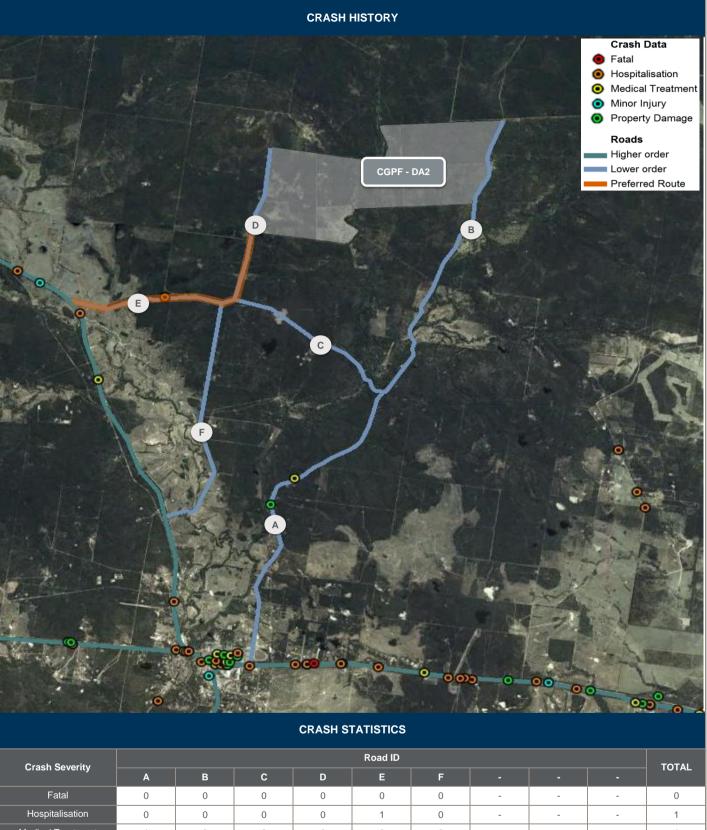
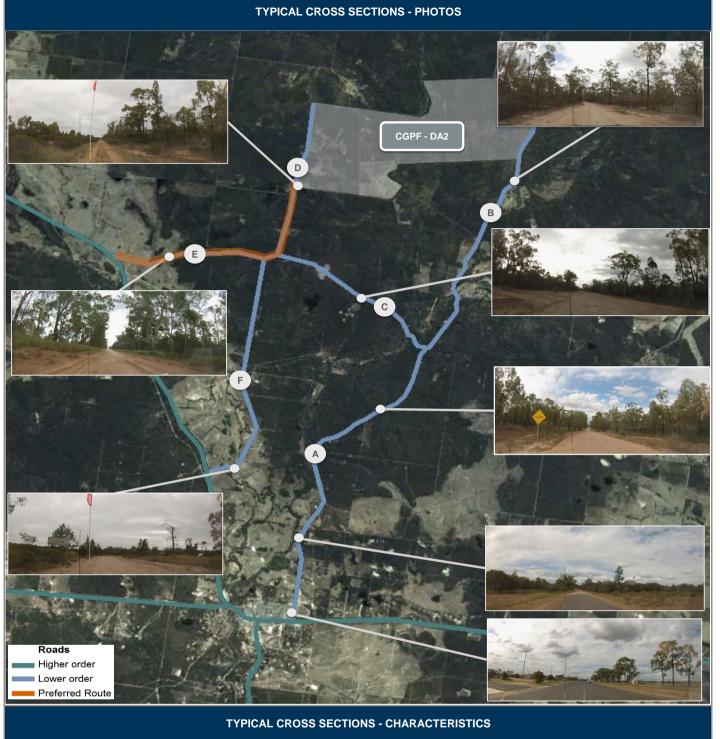

Road ID	Road Name	Jurisdiction
А	Racecource Road	Western Downs Regional Council
В	Pehlam Road	Western Downs Regional Council
С	Myall Park Road	Western Downs Regional Council
D	Retreat Road	Western Downs Regional Council
Е	Leichhardt Creek Taroom Road	Western Downs Regional Council
F	Myall Park Road	Western Downs Regional Council
-	-	-
-	-	-
-	-	-

Fig No. **D1 - A**

Fit For Use Road Inspection - Miles (CGPF - DA2) - Locality Plan



Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 19/03/2013				
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013				
G:ICEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\6413 SGP Fit For Use Assessment.xlsx;IA3-A						

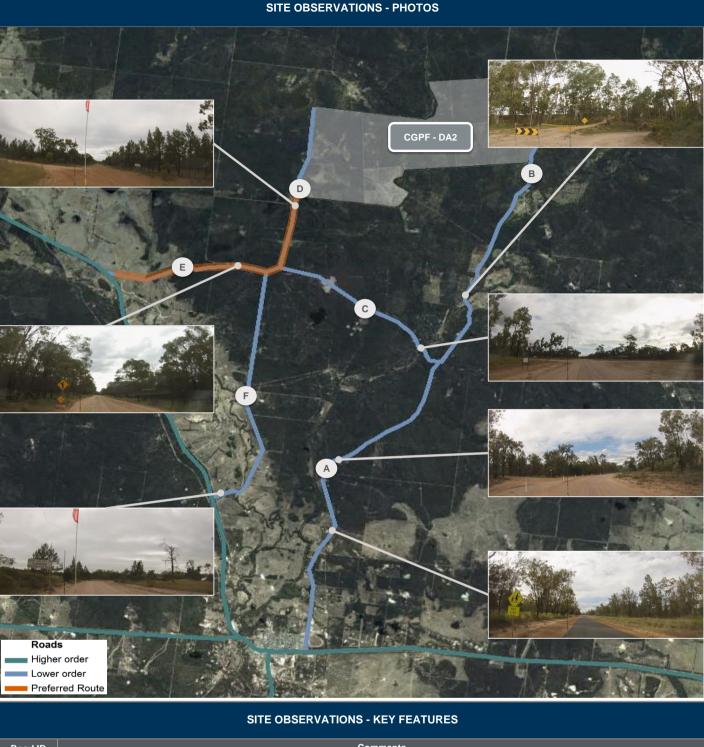
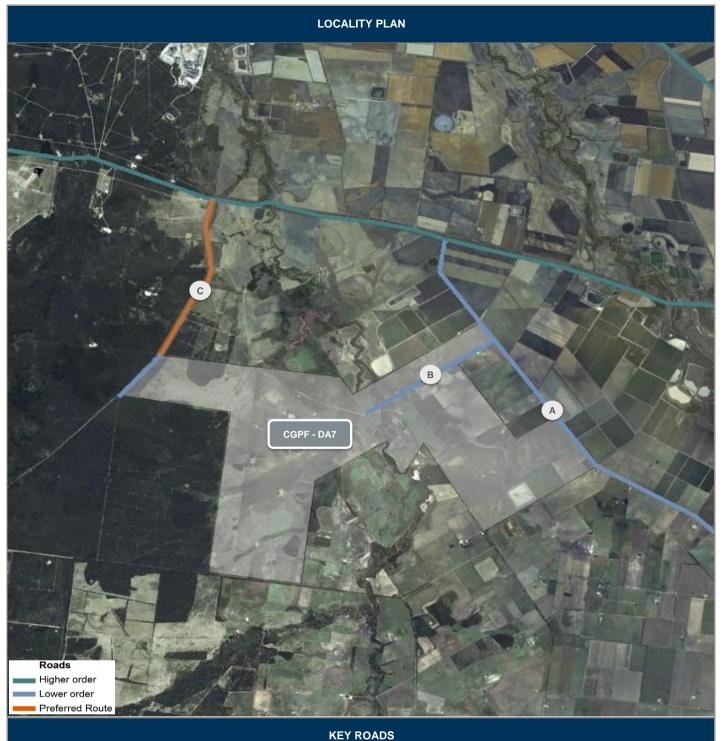

Crash Severity	Noau								TOTAL	
Crash Seventy	Α	В	С	D	E	F	-	-	-	IOIAL
Fatal	0	0	0	0	0	0	-	-	-	0
Hospitalisation	0	0	0	0	1	0	-	-	-	1
Medical Treatment	1	0	0	0	0	0	-	-	-	1
Minor Injury	0	0	0	0	0	0	-	-	-	0
Property Damage	1	0	0	0	0	0	-	-	-	1
TOTAL	2	0	0	0	1	0	-	-	-	3

	Fig No. D1 - B	Fit Fo	Fit For Use Road Inspection - Miles (CGPF - DA2) - Crash History							
	Project:	Date of Inspection: 19/03/2013								
Project No: CEB06413			Prepared by: Jeffrey Baczynski Document Date: 5/06/2013							
	G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\[6413 SGP Fit For Use Assessment.xlsx]A3-A									

Parameter	Road ID										
Farameter	А	В	С	D	E	F	-	-	-		
Speed Limit (km/h)	100	100	100	100	100	100					
Carriageway Surface Condition	Unsealed	Unsealed	Unsealed	Unsealed	Unsealed	Unsealed					
Shoulder Surface Condition	Unsealed	Unsealed	Unsealed	Unsealed	Unsealed	Unsealed					
Carriageway Width (m)	7	8	9	6	10	7					
Shoulder Width (m)	3	2	4	3	-	3					
Total Width (m)	13	12	17	12	10	13					

Fig No. D1 - C	Fit For Use	Fit For Use Road Inspection - Miles (CGPF - DA2) - Typical Cross Sections							
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 19/03/2013						
Project No:	CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013						
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\[6413 SGP Fit For Use Assessment.xlsx]A3-A									



Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 19/03/2013				
Project No: CEB06413	Prepared by: Jeffrey Baczynski Document Date: 5/06/2013					
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\(6413 SGP Fit For Use Assessment.xlsx)A3-A						

Fit For Use Road Inspection - Miles (CGPF - DA2) - Site Observations

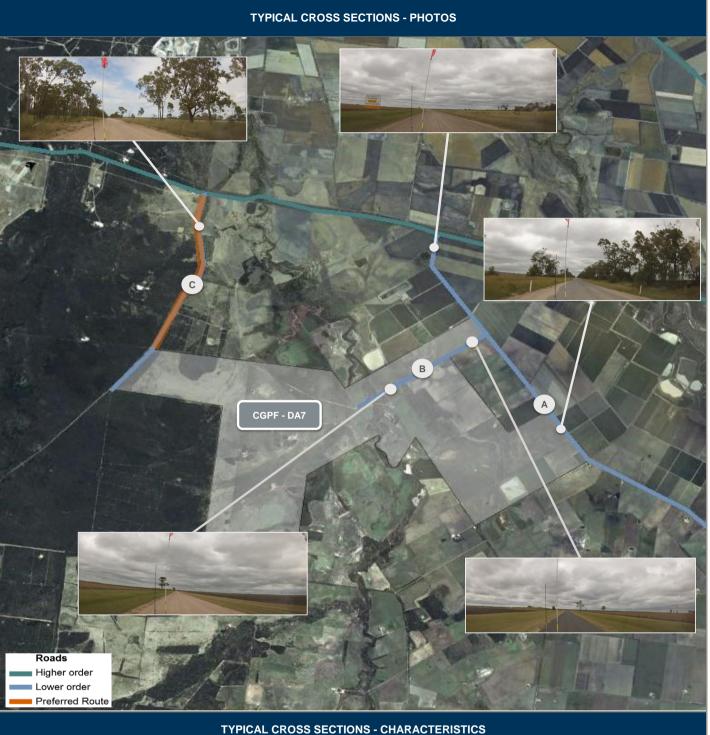
Fig No. D1 - D

Cardno

Road ID Road Name Jurisdiction A Daandine Nandi Road Western Downs Regional Council B Theten Road Western Downs Regional Council C Kumbarilla Lane Western Downs Regional Council

Project: SGP SREIS RIA
Prepared by: Damien Scutt
Date of Inspection: 20/03/2013
Project No: CEB06413
Prepared by: Jeffrey Baczynski
Document Date: 5/06/2013
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\(6413 SGP Fit For Use Assessment.x\text{lsx}\text{JA3-A}\)

Fit For Use Road Inspection - Kogan (CGPF - DA7) - Locality Plan


Fig No. **D2 - A**

Cardno Shaping the Future

Crash Severity	Road ID							TOTAL		
Grasii Severity	Α	В	С		-	-	-	-	-	IOIAL
Fatal	0	0	0	-	-	-	-	-	-	0
Hospitalisation	2	0	0	-	-	-	-	-	-	2
Medical Treatment	0	0	1	-	-	-	-	-	-	1
Minor Injury	0	0	0	-	-	-	-	-	-	0
Property Damage	0	1	0	-	-	-	-	-	-	1
TOTAL	2	1	1	-	-	-	-	-	-	4

	Fig No. D2 - B	Fit For Use Road Inspection - Kogan (CGPF - DA7) - Crash History							
	Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 20/03/2013					
Project No: CEB06413			Prepared by: Jeffrey Baczynski Document Date: 5/06/2013						
	G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\(6413 SGP Fit For Use Assessment.xlsx]A3-A								

Parameter	Road ID									
Farameter	Α	В	С	-	-	-	-	-	-	
Speed Limit (km/h)	100	100	100							
Carriageway Surface Condition	Unsealed	Unsealed	Sealed							
Shoulder Surface Condition	-	-	Sealed							
Carriageway Width (m)	11.5	8	8.5							
Shoulder Width (m)	-	-	2.0							
Total Width (m)	11.5	8	12.5							

Fig No. **D2 - C**

Fit For Use Road Inspection - Kogan (CGPF - DA7) - Typical Cross Sections

Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 20/03/2013				
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013				
CACERORA12 - Suret Cae Droinet SPEISIRA12 Analysis Lit For Lica Caca Studylika12 SCD Eit For Lica Assassment VisvIA2 A						

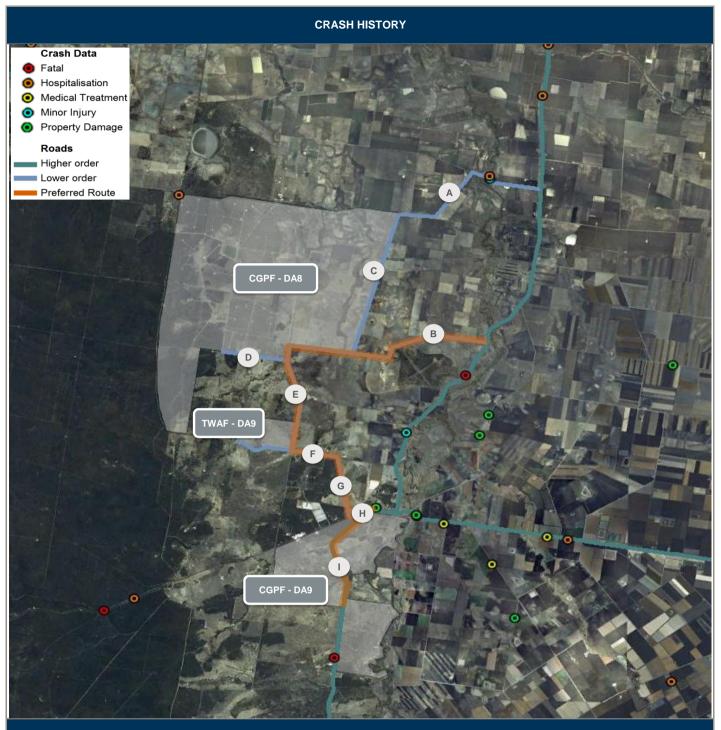
A	Good standard unsealed road. Prone to flooding in areas, sealed in sections.			
В	Narrow in sections, sealed and unsealed sections, wide road shoulders.			
С	Currently heavily utilised by energy industry vehicles. Route is sealed in sections.			
-	-			
-	-			
-	-			
-	-			
-	-			

Cardno Shaping the Future Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 20/03/2013 Project No: CEB06413 Document Date: 5/06/2013 Prepared by: Jeffrey Baczynski

Fit For Use Road Inspection - Kogan (CGPF - DA7) - Site Observations

Fig No. **D2 - D**

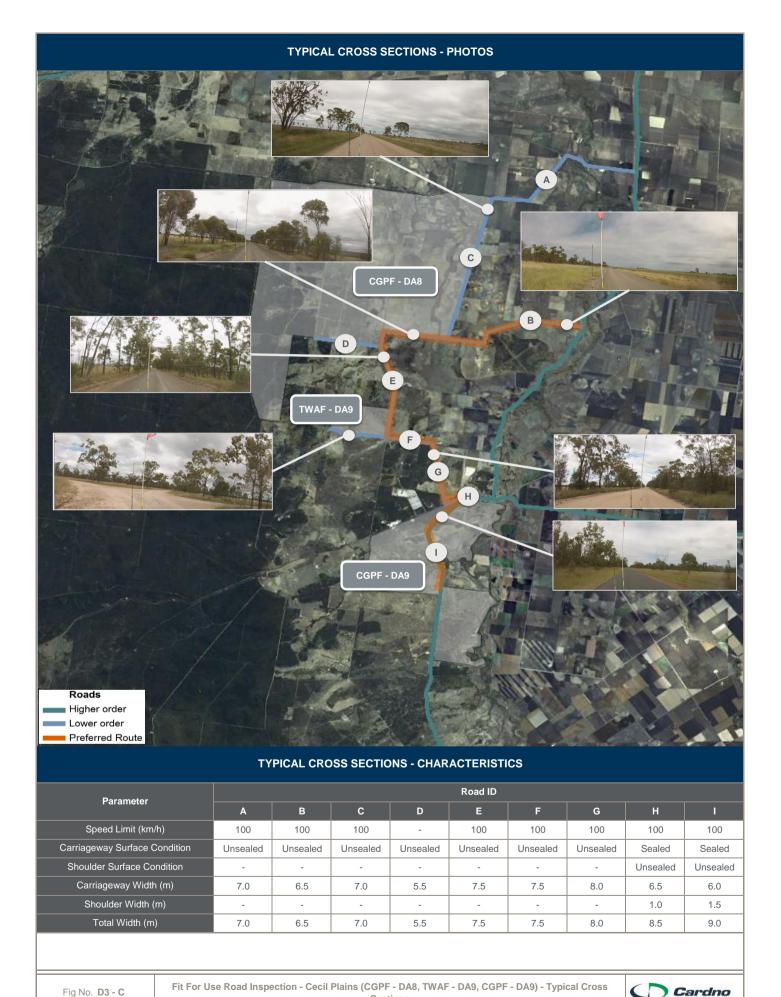
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\[6413 SGP Fit For Use Assessment.xlsx]A3-A


KEY ROADS

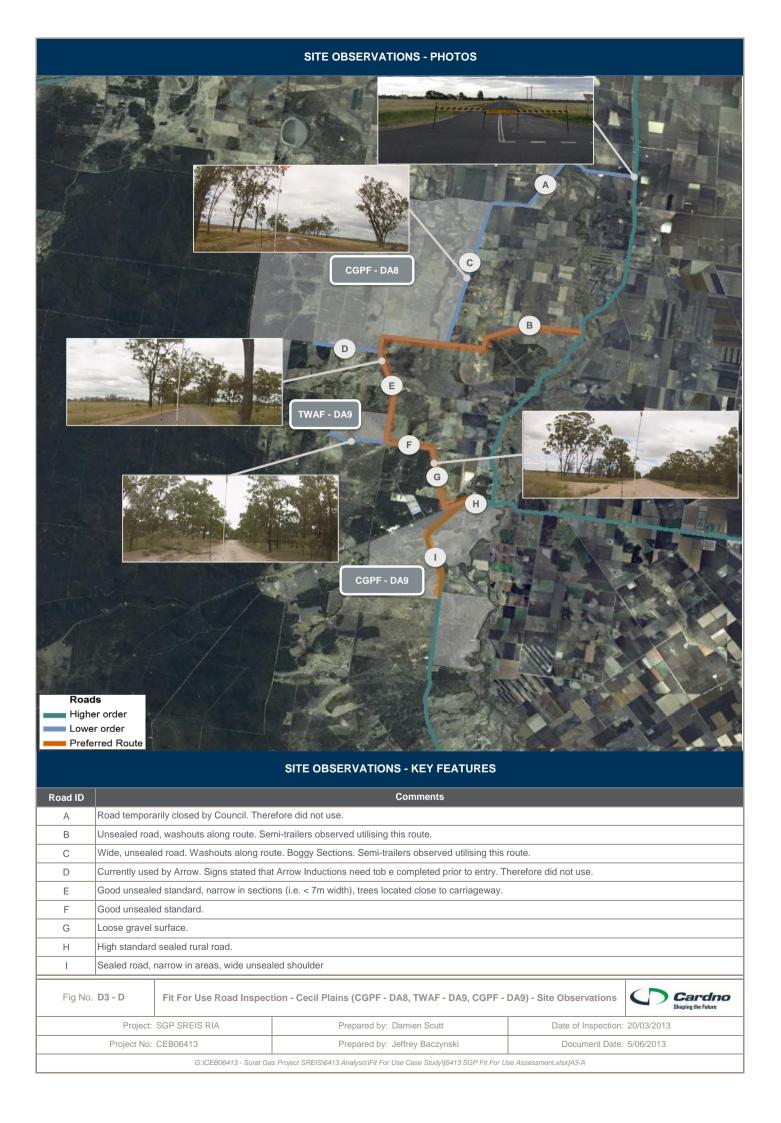
Road ID	Road Name	Jurisdiction
А	Springvale Road	Western Downs Regional Council
В	Wanka Road	Toowoomba Regional Council
С	Grassdale Road	Western Downs Regional Council/Toowoomba Regional Council
D	Percy Jurgs Road	Toowoomba Regional Council
E	Wilkins Road	Toowoomba Regional Council
F	Duntroon Road (East-West)	Toowoomba Regional Council
G	Duntroon Road (North-South)	Toowoomba Regional Council
Н	Cecil Plains-Moonie Road	Toowoomba Regional Council
I	Millmerran-Cecil Plains Road	Toowoomba Regional Council

Fig No. D3 - A Fit For Use Road Inspection - Cecil Plains (CGPF - DA9, TWAF - DA9, CGPF - DA9) - Locality Plan

Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 20/03/2013		
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013		
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\6413 SGP Fit For Use Assessment.xlsx\la3-A				

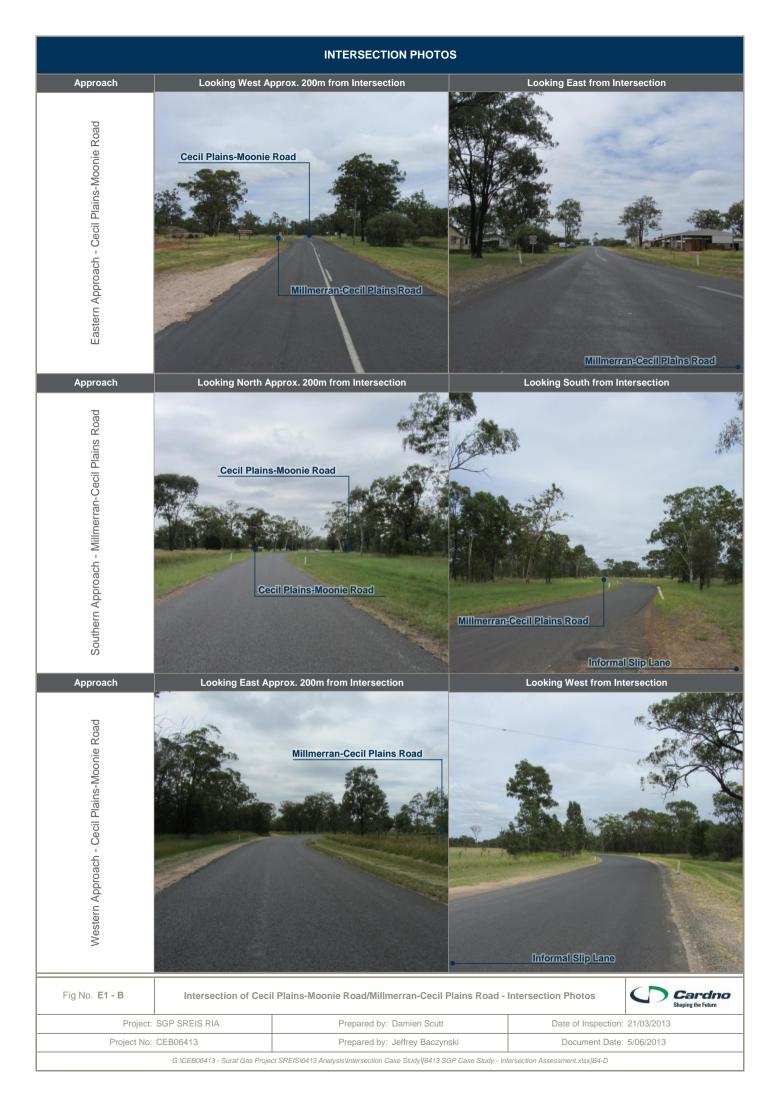

CRASH STATISTICS

Crash Severity	Road ID					TOTAL				
Crash Seventy	Α	В	С	D	E	F	G	Н	1	IOIAL
Fatal	0	0	0	0	0	0	0	0	1	1
Hospitalisation	1	0	0	0	0	0	0	0	0	1
Medical Treatment	0	0	0	0	0	0	0	0	0	0
Minor Injury	0	0	0	0	0	0	0	0	0	0
Property Damage	1	0	0	0	0	0	0	1	0	2
TOTAL	2	0	0	0	0	0	0	1	1	4


Fig No. D3 - B Fit For Use Road Inspection - Cecil Plains (CGPF - DA8, TWAF - DA9, CGPF - DA9) - Crash History

Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 20/03/2013
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

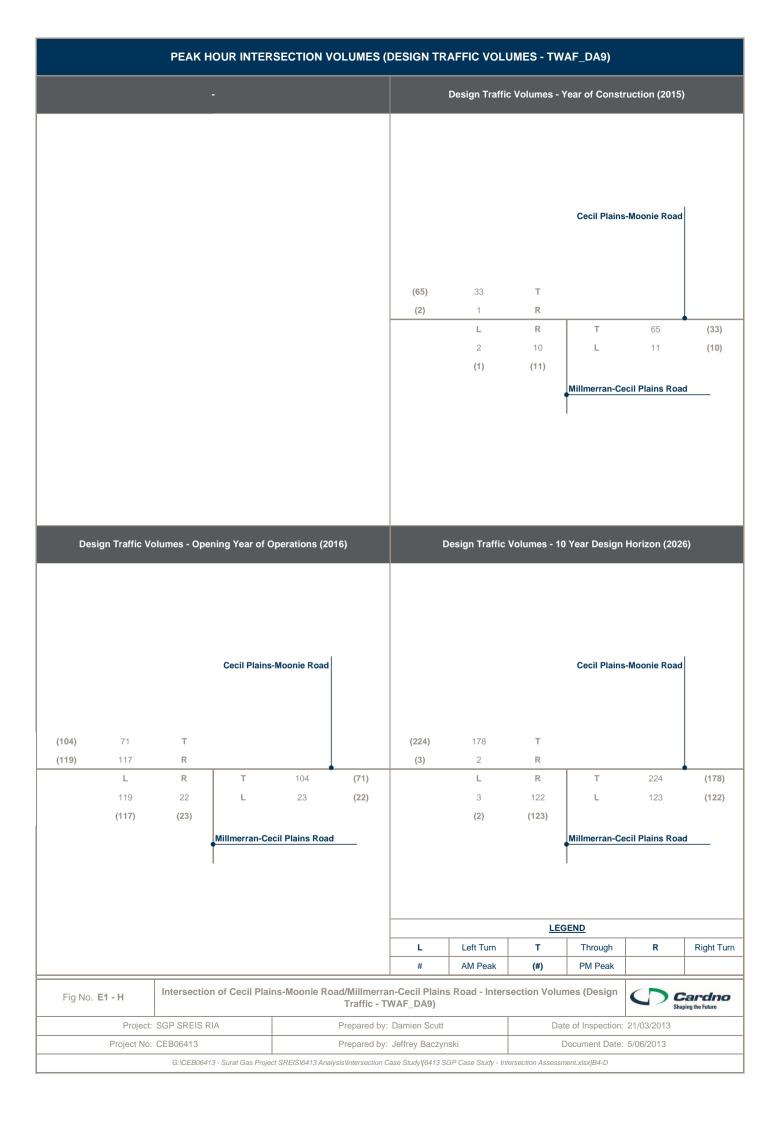
		Shaping the Future			
Project: SGP SREIS RIA		Prepared by: Damien Scutt	Date of Inspection: 20/03/2013		
Project No:	CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013		
G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Fit For Use Case Study\[6413 SGP Fit For Use Assessment.xlsx]A3-A					

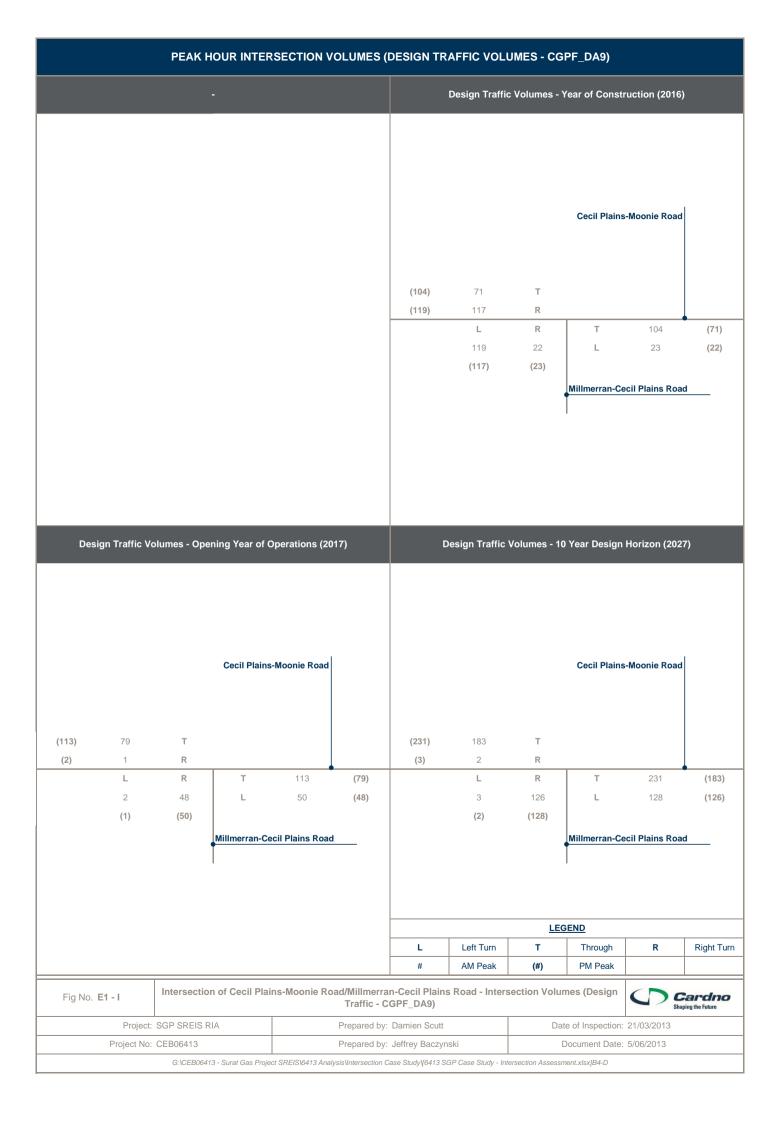

Surat Gas Project SREIS

APPENDIX E
Case Studies: Intersection Assessment

LOCALITY PLAN CGPF - DA8 Roads Higher order Lower order CGPF - DA9 Preferred Route **AERIAL PHOTO** Cecil Plains-Moonie Road Millmerran-Cecil Plains Road Cardno Shaping the Future Fig No. E1 - A Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Locality Plan Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Document Date: 5/06/2013 Prepared by: Jeffrey Baczynski

 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

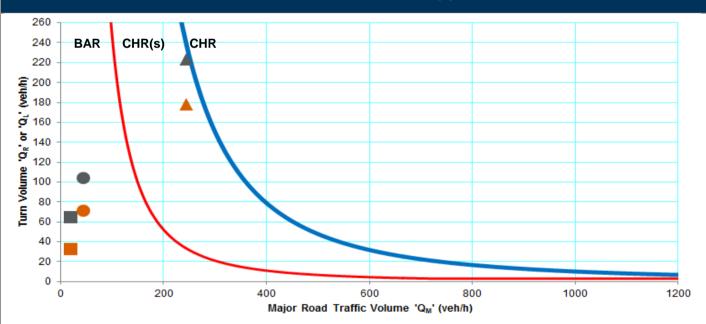

		INTERSECTION DETAILS		
Appr	roach	Road Name	Jurisdiction	
Eas	stern	Cecil Plains-Moonie Road	Toowoomba Regional Council	
Sour	thern	Millmerran-Cecil Plains Road	Toowoomba Regional Council	
Wes	stern	Cecil Plains-Moonie Road	Toowoomba Regional Council	
		SPEED LIMITS		
Appr	roach	Speed Limit	Comment	
Eas	stern	80 km/h	Deafult Rural Speed Limit	
Sout	thern	80 km/h	Speed Sign Located South of Intersection	
Wes	stern	100 km/h	Speed Sign Located West of Intersection	
		TURN TREATMENTS		
Appr	roach	Left Turn	Right Turn	
Eastern		Nil	Nil	
Southern		Nil	Nil	
Western		Nil	Nil	
		SIGHT DISTANCES		
Approach		Safe Intersection Sight Distance	Approach Stopping Distance	
Eas	stern	300m +	200m +	
Sout	thern	300m +	200m +	
Wes	stern	130m	130m	
		PAVEMENT CONDITIONS		
Approach		Condition	Comments	
Eastern		Sealed	-	
Southern		Sealed	-	
Western		Sealed	-	
		I Plains-Moonie Road/Millmerran-Cecil Plains Road -	Physical Properties Cardno	
Fig No. E1 - C	Intersection of Ceci	Than the should read minimental seem had been the	Shaping the Future	
	Intersection of Ceci	Prepared by: Damien Scutt		


PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - TWAF_DA9) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2015)** AM Peak Dervived from PM Count 4:30pm to 5:30pm PM Peak Cecil Plains-Moonie Road Cecil Plains-Moonie Road (39) Т (41) 10 (2) R 1 R L R 39 (9) L R 41 (10) 2 9 L 10 (9) 2 10 11 (10) (1) (10)(1) (11) Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **LEGEND GROWTH FACTOR** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2015 3.00% 1.06 **Background Traffic Volumes - Opening Year of Operations (2016)** Background Traffic Volumes - 10 Year Design Horizon (2026) Cecil Plains-Moonie Road Cecil Plains-Moonie Road (43) Т (59) 14 (2) R 2 R (3) L R 43 (10) L R 59 (14) 2 10 11 (10) 3 14 15 (14) (1) (11) (2) (15) Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Growth Rate** Base Year Factor **Base Year Future Year** Factor 2013 3.00% 1.09 2013 2026 3.00% 1.39 Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Intersection Volumes Fig No. E1 - D Cardno (Background Traffic - TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - CGPF_DA9) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2016)** AM Peak Dervived from PM Count 4:30pm to 5:30pm PM Peak Cecil Plains-Moonie Road Cecil Plains-Moonie Road (39) Т (43)10 (2) R 1 R L R 39 (9) L R 43 (10) 2 9 L 10 (9) 2 10 11 (10) (1) (10)(1) (11) Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **LEGEND GROWTH FACTOR** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2016 3.00% 1.09 **Background Traffic Volumes - Opening Year of Operations (2017)** Background Traffic Volumes - 10 Year Design Horizon (2027) Cecil Plains-Moonie Road Cecil Plains-Moonie Road (44) Т (62) 14 (2) R 2 R (3) L R 44 (10) L R 62 (14) 2 10 11 (10) 3 14 16 (14) (1) (11) (2) (16) Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Growth Rate** Base Year Factor **Base Year Future Year** Factor 2013 3.00% 2013 3.00% 1.42 Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Intersection Volumes Fig No. E1 - E Cardno (Background Traffic - CGPF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

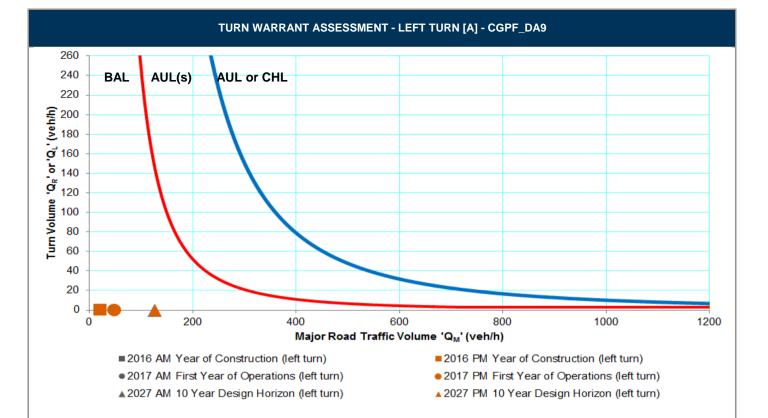
PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - TWAF_DA9) **Project Traffic Volumes - Year of Construction (2015)** Cecil Plains-Moonie Road (23) 23 Note: It has conservatively been assumed that 100% of the estimated daily project 0 R traffic demands that travel through this intersection will do so during both the AM & PM peak hour periods. That is, the project traffic demands presented herein L R 23 (23) represent 24 hour demands than 1 hour demands. 0 0 0 () () () Millmerran-Cecil Plains Road Project Traffic Volumes - Opening Year of Operations (2016) Project Traffic Volumes - 10 Year Design Horizon (2026) Cecil Plains-Moonie Road Cecil Plains-Moonie Road (61) Т (164) 164 (116) 116 R 0 R () L R 61 (61) L R 164 (164) 116 12 12 (12) 0 108 108 (108) (116) (12) (108)Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **LEGEND** Left Turn Т Right Turn L Through AM Peak PM Peak (#) Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Intersection Volumes (Project Fig No. E1 - F Cardno Shaping the Future Traffic - TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - CGPF_DA9) **Project Traffic Volumes - Year of Construction (2016)** Cecil Plains-Moonie Road (61) 61 Note: It has conservatively been assumed that 100% of the estimated daily project (116)116 R traffic demands that travel through this intersection will do so during both the AM & PM peak hour periods. That is, the project traffic demands presented herein L R 61 (61) represent 24 hour demands than 1 hour demands. 116 12 12 (12) (116)(12)Millmerran-Cecil Plains Road Project Traffic Volumes - Opening Year of Operations (2017) Project Traffic Volumes - 10 Year Design Horizon (2027) Cecil Plains-Moonie Road Cecil Plains-Moonie Road (69) Т (169) 169 0 R 0 R () () L R 69 (69) L R 169 (169) 0 38 38 (38) 0 112 112 (112) (38) (112) Millmerran-Cecil Plains Road Millmerran-Cecil Plains Road **LEGEND** Left Turn Т Right Turn L Through AM Peak PM Peak (#) Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Intersection Volumes (Project Fig No. E1 - G Cardno Shaping the Future Traffic - CGPF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

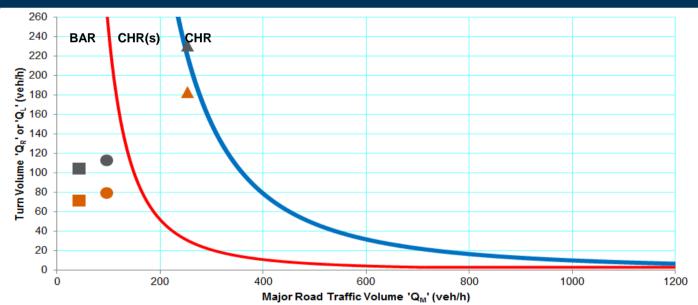


TURN WARRANT ASSESSMENT - LEFT TURN [A] - TWAF_DA9 260 AUL(s) **AUL or CHL** 240 BAL 220 (**ku**) 200 180 160 5 140 ď 120 **Furn Volume** 100 80 60 40 20 0 400 600 800 1000 1200 Major Road Traffic Volume 'QM' (veh/h) ■2015 AM Year of Construction (left turn) ■ 2015 PM Year of Construction (left turn) 2016 AM First Year of Operations (left turn) • 2016 PM First Year of Operations (left turn) ▲2026 AM 10 Year Design Horizon (left turn) ▲ 2026 PM 10 Year Design Horizon (left turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn


TURN WARRANT ASSESSMENT - RIGHT TURN [A] - TWAF_DA9

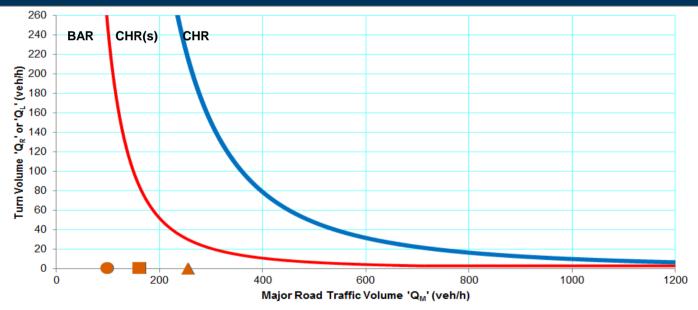
- ■2015 AM Year of Construction (right turn) ■2015 PM Year of Construction (right turn) • 2016 AM First Year of Operations (right turn) • 2016 PM First Year of Operations (right turn)


▲ 2026 AM 10 Year Design Horizon (right to	n) ▲2026 PM 10 Yea	r Design Horizon (right turn)
--	--------------------	-------------------------------

BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised	d Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn
Fig No. E1 - J	Intersection of Cecil Plai	ns-Moonie Road/Millmerran-Cecil Plains Road - Turn \ (TWAF_DA9)	Warrant Assessment [A] - Cardno Shaping the Future
Project: SGP SREIS RIA		Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CER06413		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

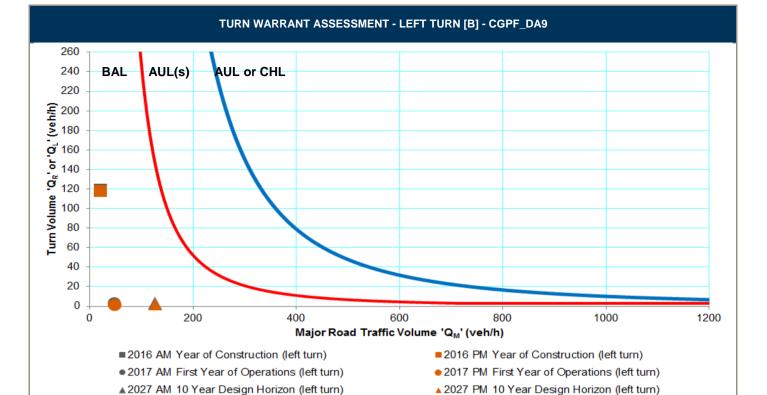
BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn

TURN WARRANT ASSESSMENT - RIGHT TURN [A] - CGPF_DA9


- ■2016 AM Year of Construction (right turn) ■2016 PM Year of Construction (right turn)
- 2017 AM First Year of Operations (right turn) 2017 PM First Year of Operations (right turn)
- ▲ 2027 AM 10 Year Design Horizon (right turn) ▲ 2027 PM 10 Year Design Horizon (right turn)

BAR Basic Right Turn CHR(s) Channelised Right Turn (short)		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
		BAL Basic Left Turn	AUL Auxillary Left Turn
Fig No. E1 - K Intersection of Cecil Plain		ns-Moonie Road/Millmerran-Cecil Plains Road - Turn \ (CGPF_DA9)	Warrant Assessment [A] - Cardno Shaping the Future
Project: SGP SREIS RIA		Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CEB06413		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

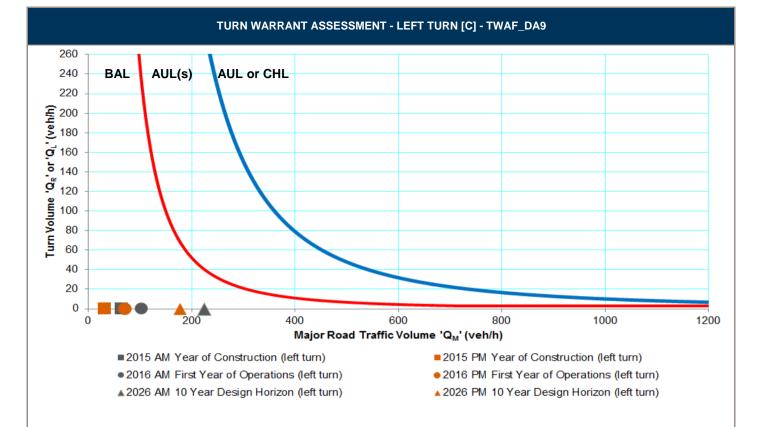
TURN WARRANT ASSESSMENT - LEFT TURN [B] - TWAF_DA9 260 AUL(s) AUL or CHL BAL 240 220 Turn Volume 100 100 100 100 80 60 40 20 0 200 400 600 800 1000 1200 Major Road Traffic Volume 'Q_M' (veh/h) ■2016 AM Year of Construction (left turn) ■2016 PM Year of Construction (left turn) • 2017 AM First Year of Operations (left turn) • 2017 PM First Year of Operations (left turn) ▲ 2027 AM 10 Year Design Horizon (left turn) ▲ 2027 PM 10 Year Design Horizon (left turn)


BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn

nelised Right Turn (short) BAL Basic Left Turn AUL Auxillary Left Turn TURN WARRANT ASSESSMENT - RIGHT TURN [B] - TWAF_DA9

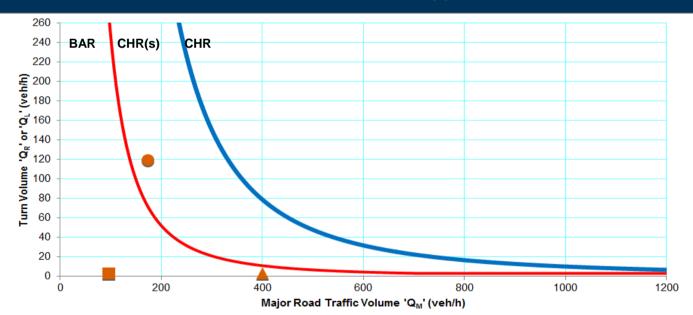
■ 2016 AM Year of Construction (right turn)	■2016 PM	Year of Construction (right turn)
● 2017 AM First Year of Operations (right turn)	● 2017 PM	First Year of Operations (right turn)
▲ 2027 AM 10 Year Design Horizon (right turn)	▲ 2027 PM	10 Year Design Horizon (right turn)

BAR Basic Right	Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised	d Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		
Fig No. E1 - L	o. E1 - L Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Turn Warrant Assessment [B] - (TWAF_DA9)				
Project: SGP SREIS RIA		Prepared by: Damien Scutt	Date of Inspection: 21/03/2013		
		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013		


BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn

TURN WARRANT ASSESSMENT - RIGHT TURN [B] - CGPF_DA9 260 240 CHR(s) BAR CHR 220 (vehih) 180 160 140 **ق** ₁₂₀ Turn Volume 100 80 60 40 20 0 600 1000 400 800 1200 Major Road Traffic Volume 'Q_M' (veh/h) ■2016 AM Year of Construction (right turn) ■2016 PM Year of Construction (right turn)

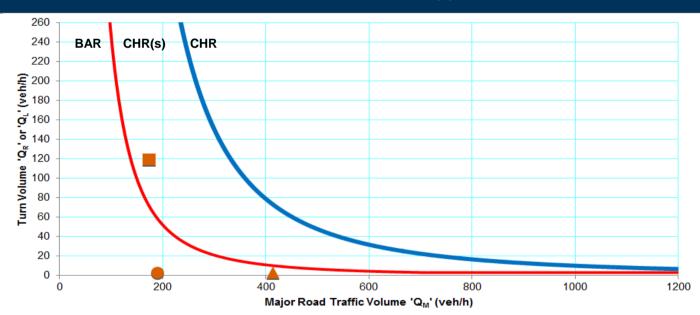
BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelise	d Right Turn (short)	BAL Basic Left Turn AUL Auxillary Left Tu			
Fig No. E1 - M Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Turn Warrant Assessment [B] - (CGPF_DA9)					
Projec	: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013		


G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

2017 AM First Year of Operations (right turn)
 2017 PM First Year of Operations (right turn)
 2027 AM 10 Year Design Horizon (right turn)
 2027 PM 10 Year Design Horizon (right turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		

TURN WARRANT ASSESSMENT - RIGHT TURN [C] - TWAF_DA9

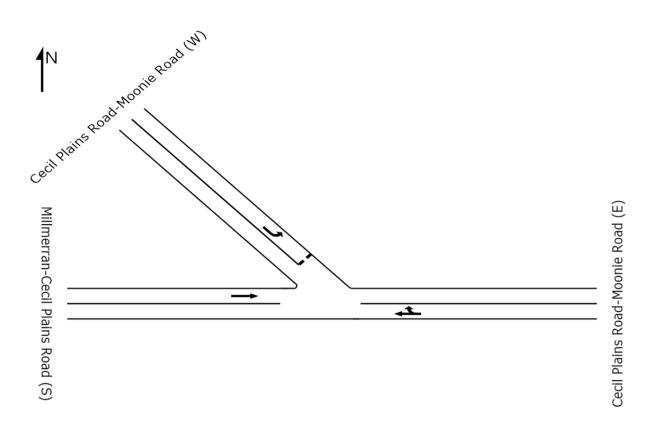

- ■2015 AM Year of Construction (right turn) ■2015 PM Year of Construction (right turn)
- 2016 AM First Year of Operations (right turn) 2016 PM First Year of Operations (right turn)
- ▲ 2026 AM 10 Year Design Horizon (right turn) ▲ 2026 PM 10 Year Design Horizon (right turn)

BAR Basic Right	Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)			
CHR(s) Channelised	Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn			
Fig No. E1 - N	Intersection of Cecil Plair	ns-Moonie Road/Millmerran-Cecil Plains Road - Turn \ (TWAF_DA9)	Warrant Assessment [C] - Cardno Shaping the Future			
Project: SGP SREIS RIA Project No: CEB06413		Prepared by: Damien Scutt	Date of Inspection: 21/03/2013			
		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013			

TURN WARRANT ASSESSMENT - LEFT TURN [C] - CGPF_DA9 260 AUL(s) BAL AUL or CHL 240 220 (4) 200 180 160 140 120 Turn Volume 100 80 60 40 20 0 400 600 800 1000 0 1200 Major Road Traffic Volume 'QM' (veh/h) ■2015 PM Year of Construction (left turn) ■2015 AM Year of Construction (left turn) • 2016 AM First Year of Operations (left turn) • 2016 PM First Year of Operations (left turn) ▲ 2026 AM 10 Year Design Horizon (left turn) ▲ 2026 PM 10 Year Design Horizon (left turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		

TURN WARRANT ASSESSMENT - RIGHT TURN [C] - CGPF_DA9

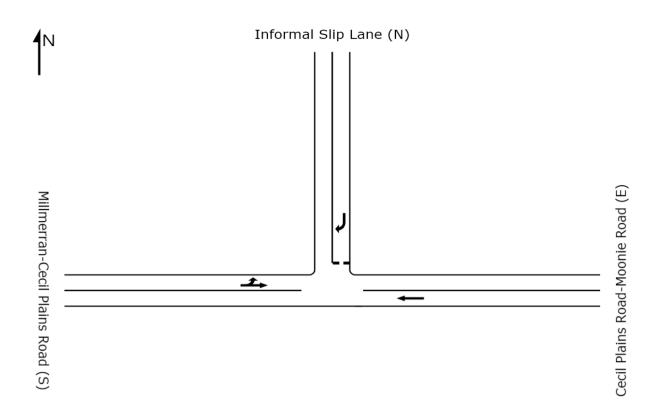

■2015 AM Year of Construction (right turn)	■2015 PM Year of Construction (right turn)
• 2016 AM First Year of Operations (right turn	• 2016 PM First Year of Operations (right turn)

▲ 2026 AM 10 Year Design Horizon (right turn) ▲ 2026 PM 10 Year Design Horizon (right turn)

BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)			
CHR(s) Channelised Right Turn (short)		BAL Basic Left Turn	AUL Auxillary Left Turn			
Fig No. E1 - O	Intersection of Cecil Plair	ns-Moonie Road/Millmerran-Cecil Plains Road - Turn \ (CGPF_DA9)	Warrant Assessment [C] - Cal	rdno the Future		
Proiect:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013			

Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION [A]


OPERATIONAL ANALYSIS - SUMMARY OF RESULTS [A]									
		Mornir	ng Peak		Afternoon Peak				ple
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Volumes	71 vehs	0.03	12 secs	1 m	71 vehs	0.03	12 secs	1 m	√
2015 Year of Construction (TWAF_DA	.9) 125 vehs	0.05	12 secs	2 m	117 vehs	0.06	12 secs	2 m	√
2016 Year of Construction (CGPF_DA	9) 232 vehs	0.09	12 secs	4 m	232 vehs	0.09	12 secs	3 m	√
2016 1st Year of Operations (TWAF_D	A9) 232 vehs	0.09	12 secs	4 m	232 vehs	0.09	12 secs	3 m	✓
2017 1st Year of Operations (CGPF_D	A9) 305 vehs	0.11	12 secs	5 m	305 vehs	0.10	12 secs	4 m	✓
2026 10 Year Design Horizon (TWAF_D	721 vehs	0.27	13 secs	13 m	721 vehs	0.23	13 secs	11 m	✓
2027 10 Year Design Horizon (CGPF_D	703 vehs	0.26	13 secs	13 m	703 vehs	0.23	13 secs	11 m	✓
Fig No. E1 - P Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Operational Assessment [A]							ardno ing the Future		

Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013

Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013

G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\6413 SGP Case Study - Intersection Assessment.xlsx\]B4-D

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION [B]

		Mornir	ıg Peak			Afterno	on Peak	eje	
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Volumes	23 vehs	0.01	12 secs	0 m	23 vehs	0.01	12 secs	0 m	√
2015 Year of Construction (TWAF_DA9)	25 vehs	0.01	12 secs	0 m	25 vehs	0.01	12 secs	0 m	✓
2016 Year of Construction (CGPF_DA9)	296 vehs	0.16	13 secs	5 m	296 vehs	0.16	13 secs	5 m	✓
2016 1st Year of Operations (TWAF_DA9)	296 vehs	0.16	13 secs	5 m	296 vehs	0.16	13 secs	5 m	√
2017 1st Year of Operations (CGPF_DA9)	106 vehs	0.03	13 secs	0 m	106 vehs	0.03	13 secs	0 m	√
2026 10 Year Design Horizon (TWAF_DA9)	285 vehs	0.08	15 secs	0 m	285 vehs	0.08	15 secs	0 m	✓
2027 10 Year Design Horizon (CGPF_DA9)	273 vehs	0.08	14 secs	0 m	273 vehs	0.08	14 secs	0 m	√

Intersection of Cecil Plains-Moonie Road/Millmerran-Cecil Plains Road - Operational Assessment [B]

Prepared by: Damien Scutt

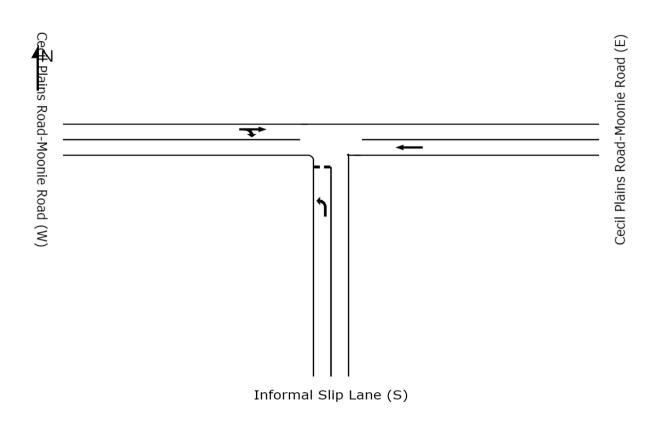
 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

Prepared by: Jeffrey Baczynski

Fig No. **E1 - Q**

Project: SGP SREIS RIA

Project No: CEB06413


Cardno Shaping the Future

Date of Inspection: 21/03/2013

Document Date: 5/06/2013

OPERATIONAL ANALYSIS - SUMMARY OF RESULTS [B]

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION [C]

OPERATIONAL ANALYSIS - SUMMARY OF	RESULTS [C]

		Mornir	ıg Peak		Afternoon Peak			pje	
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Volumes	54 vehs	0.02	12 secs	0 m	54 vehs	0.03	12 secs	1 m	√
2015 Year of Construction (TWAF_DA9)	106 vehs	0.04	12 secs	1m	106 vehs	0.04	12 secs	2 m	√
2016 Year of Construction (CGPF_DA9)	433 vehs	0.13	13 secs	6 m	433 vehs	0.15	12 secs	7 m	√
2016 1st Year of Operations (TWAF_DA9)	433 vehs	0.13	13 secs	6 m	433 vehs	0.15	12 secs	7 m	✓
2017 1st Year of Operations (CGPF_DA9)	205 vehs	0.07	13 secs	2 m	205 vehs	0.07	12 secs	3 m	✓
2026 10 Year Design Horizon (TWAF_DA9)	446 vehs	0.14	13 secs	7 m	446 vehs	0.14	13 secs	8 m	✓
2027 10 Year Design Horizon (CGPF_DA9)	441 vehs	0.14	13 secs	7 m	441 vehs	0.14	13 secs	8 m	✓

Fig No. E1 - R

 $Intersection \ of \ Cecil \ Plains-Moonie \ Road/Millmerran-Cecil \ Plains \ Road \ - \ Operational \ Assessment \ [C]$

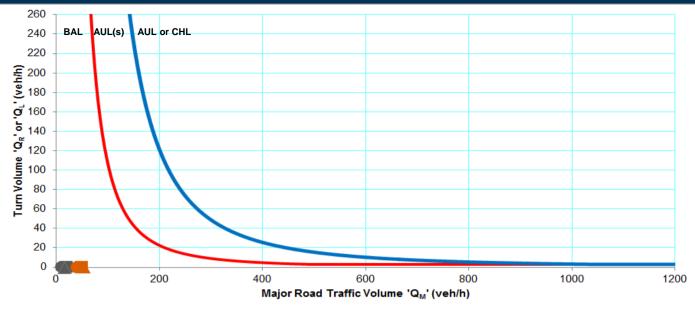
·	I .	· · · · · · · · · · · · · · · · · · ·
Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

LOCALITY PLAN CGPF - DA8 TWAF-DA9 Roads Higher order Lower order CGPF - DA9 Preferred Route **AERIAL PHOTO** Cecil Plains-Moonie Road Cardno Shaping the Future Fig No. **E2 - A** Intersection of Cecil Plains-Moonie Road/Duntroon Road - Locality Plan Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Document Date: 5/06/2013 Prepared by: Jeffrey Baczynski $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

INTERSECTION DETAILS							
Appro	pach	Road Name	Jurisdiction				
North	ern	Duntroon Road	Toowoomba Regional Council				
Eastern		Cecil Plains-Moonie Road	Toowoomba Regional Council				
West	ern	Cecil Plains-Moonie Road	Toowoomba Regional Council				
		SPEED LIMITS					
Appro	pach	Speed Limit	Comment				
North	ern	100 km/h	Deafult Rural Speed Limit				
Easte	ern	100 km/h	Speed Sign Located East of Intersection				
West	ern	100 km/h	Deafult Rural Speed Limit				
TURN TREATMENTS							
Appro	ach	Left Turn	Right Turn				
North	ern	Nil	Nil				
Easte	ern	Nil	Nil				
Western		Nil	Nil				
		SIGHT DISTANCES					
Appro	pach	Safe Intersection Sight Distance	Approach Stopping Distance				
North	ern	300m +	200m +				
Easte	ern	300m +	200m +				
West	ern	300m +	200m +				
		PAVEMENT CONDITIONS					
Appro	pach	Condition	Comments				
North	ern	Loose Gravel	-				
Easte	ern	Sealed	-				
West	ern	Sealed	-				
Fig No. E2 - C	Intersection	of Cecil Plains-Moonie Road/Duntroon Road - Physic	al Properties Cardno				
The state of the s							
Project: S	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013				

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - TWAF_DA9) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2015)** AM Peak 6:30am to 7:30am 4:30pm to 5:30pm PM Peak **Duntroon Road Duntroon Road** () (2) () (2) () 0 L 0 () 0 L 0 3 (36)9 Т R L (38)10 Т R L R 3 () R 3 () 25 (13) 27 (14) Cecil Plains-Moonie Road Cecil Plains-Moonie Road **LEGEND GROWTH FACTOR** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2015 3.00% 1.06 **Background Traffic Volumes - Opening Year of Operations (2016)** Background Traffic Volumes - 10 Year Design Horizon (2026) **Duntroon Road Duntroon Road** () (2) (3) () () 0 L 0 3 () 0 L 4 (39) 10 Т R (50) 13 Т R R 3 () R 4 () 27 (14) 35 (18) Cecil Plains-Moonie Road Cecil Plains-Moonie Road **GROWTH FACTOR GROWTH FACTOR Growth Rate Future Year Growth Rate** Base Year **Future Year** Factor **Base Year** Factor 2013 3.00% 2013 2026 3.00% 1.39 Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Background Traffic -Fig No. **E2 - D** Cardno Shaping the Future TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - CGPF_DA8) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2016)** AM Peak 6:30am to 7:30am 4:30pm to 5:30pm PM Peak **Duntroon Road Duntroon Road** () (2) (2) () 0 L 0 () 0 L 0 3 (36)9 Т R L (39) 10 Т R L R 3 () R 3 () 25 (13) 27 (14) Cecil Plains-Moonie Road Cecil Plains-Moonie Road **LEGEND GROWTH FACTOR** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2016 3.00% 1.09 **Background Traffic Volumes - Opening Year of Operations (2017)** Background Traffic Volumes - 10 Year Design Horizon (2027) **Duntroon Road Duntroon Road** () (2) (3) () () 0 L 0 3 () 0 L 4 (40)10 Т R (51) 13 Т R R 3 () R 4 () 28 (15) 36 (18) Cecil Plains-Moonie Road Cecil Plains-Moonie Road **GROWTH FACTOR GROWTH FACTOR Growth Rate Future Year Growth Rate** Base Year **Future Year** Factor **Base Year** Factor 2013 3.00% 1.12 2013 2027 3.00% 1.42 Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Background Traffic -Fig No. **E2 - E** Cardno Shaping the Future CGPF_DA8) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D


PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - TWAF_DA9) **Project Traffic Volumes - Year of Construction (2015) Duntroon Road** (12) () 0 L 0 12 Note: It has conservatively been assumed that 100% of the estimated daily project (12) 12 Т R L traffic demands that travel through this intersection will do so during both the AM & PM peak hour periods. That is, the project traffic demands presented herein R 12 (12) represent 24 hour demands than 1 hour demands. 12 (12) Cecil Plains-Moonie Road Project Traffic Volumes - Opening Year of Operations (2016) Project Traffic Volumes - 10 Year Design Horizon (2026) **Duntroon Road Duntroon Road** () (175) (163) () () 0 L 0 175 () 0 163 (2) 2 Т R L (4) 4 Т L R 175 (175) R 163 (163) 2 (2) 4 (4) Cecil Plains-Moonie Road Cecil Plains-Moonie Road LEGEND Left Turn Т Right Turn L Through AM Peak PM Peak (#) Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Project Traffic -Fig No. **E2 - F** Cardno Shaping the Future TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - CGPF_DA8) **Project Traffic Volumes - Year of Construction (2016) Duntroon Road** (175)() 0 L 0 175 Note: It has conservatively been assumed that 100% of the estimated daily project (2) 2 Т R L traffic demands that travel through this intersection will do so during both the AM & PM peak hour periods. That is, the project traffic demands presented herein R 175 (175) represent 24 hour demands than 1 hour demands. 2 (2) Cecil Plains-Moonie Road **Project Traffic Volumes - Opening Year of Operations (2017)** Project Traffic Volumes - 10 Year Design Horizon (2027) **Duntroon Road Duntroon Road** () (66) (165) () () 0 L 0 66 () 0 165 (17)17 Т R L (4) 4 Т L R 66 (66) R 165 (165) 17 (17) 4 (4) Cecil Plains-Moonie Road Cecil Plains-Moonie Road LEGEND Left Turn Т Right Turn L Through AM Peak PM Peak (#) Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Project Traffic -Fig No. **E2 - G** Cardno Shaping the Future CGPF_DA8) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

PEAK HOUR INTERSECTION VOLUMES (DESIGN TRAFFIC VOLUMES - TWAF_DA9) **Design Traffic Volumes - Year of Construction (2015) Duntroon Road** (14) () 0 L 0 15 (50)21 Т R L R 15 (12) 38 (25) Cecil Plains-Moonie Road Design Traffic Volumes - 10 Year Design Horizon (2026) **Design Traffic Volumes - Opening Year of Operations (2016) Duntroon Road Duntroon Road** () (178) () (166) () 0 L 0 179 () 0 167 (41) 12 Т R L (54) 17 Т L R 179 (175) 167 (163) 29 (16) 39 (22) Cecil Plains-Moonie Road Cecil Plains-Moonie Road LEGEND L Left Turn Т Through Right Turn AM Peak (#) PM Peak Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Design Traffic -Cardno Shaping the Future Fig No. E2 - H TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

PEAK HOUR INTERSECTION VOLUMES (DESIGN TRAFFIC VOLUMES - GCPF_DA8) **Design Traffic Volumes - Year of Construction (2016) Duntroon Road** (178)() 0 L 0 179 (41) 12 Т R L R 179 (175) 29 (16) Cecil Plains-Moonie Road **Design Traffic Volumes - Opening Year of Operations (2017)** Design Traffic Volumes - 10 Year Design Horizon (2027) **Duntroon Road Duntroon Road** () (68) () (167) () 0 L 0 69 () 0 169 (58) 28 Т R L (55) 17 Т L R 69 (66) R 169 (165) 45 (32) 40 (23) Cecil Plains-Moonie Road Cecil Plains-Moonie Road LEGEND L Left Turn Т Through Right Turn AM Peak (#) PM Peak Intersection of Cecil Plains-Moonie Road/Duntroon Road - Intersection Volumes (Design Traffic -Cardno Shaping the Future Fig No. E2 - I CGPF_DA8) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

TURN WARRANT ASSESSMENT - LEFT TURN - TWAF_DA9

- ■2015 AM Year of Construction (left turn)
- 2016 AM First Year of Operations (left turn)
- ▲ 2026 AM 10 Year Design Horizon (left turn)
- ■2015 PM Year of Construction (left turn)
- 2016 PM First Year of Operations (left turn)
- ▲ 2026 PM 10 Year Design Horizon (left turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		

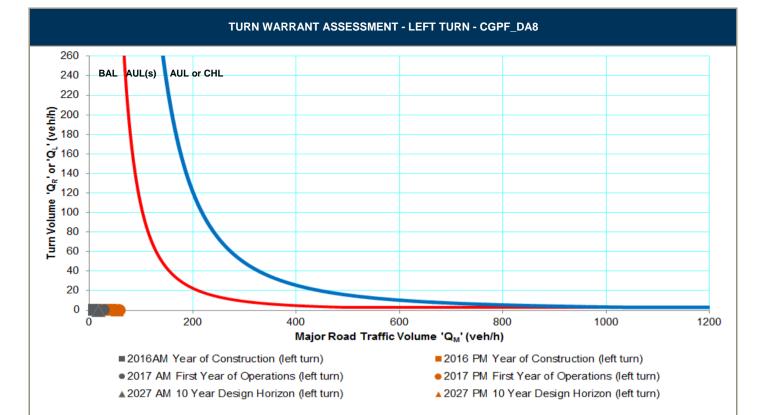
TURN WARRANT ASSESSMENT - RIGHT TURN - TWAF_DA9

- ■2015 AM Year of Construction (right turn) ■2015 PM Year of Construction (right turn)
- 2016 AM First Year of Operations (right turn)
 2016 PM First Year of Operations (right turn)
- ▲ 2026 AM 10 Year Design Horizon (right turn) ▲ 2026 PM 10 Year Design Horizon (right turn)

BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)				
CHR(s) Channelised Right Turn (short)		BAL Basic Left Turn AUL Auxillary I		eft Turn			
Fig No. E2 - J	Intersection of Cecil Pla	Intersection of Cecil Plains-Moonie Road/Duntroon Road - Turn Warrant Assessment - (TWAF_DA9)					

Project: SGP SREIS RIA

Prepared by: Damien Scutt


Date of Inspection: 21/03/2013

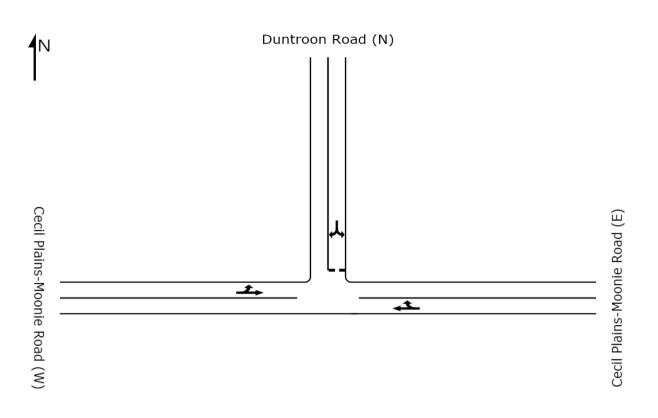
Project No: CEB06413

Prepared by: Jeffrey Baczynski

Document Date: 5/06/2013

G:ICEB06413 - Surat Gas Project SREISI6413 Analysis Untersection Case Study (6413 SGP Case Study - Intersection Assessment.xlsx)B4-D

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		


TURN WARRANT ASSESSMENT - RIGHT TURN - CGPF_DA8 BAR CHR(s) CHR (kg 200 180 160 Turn Volume 'QR' Major Road Traffic Volume 'Q_M' (veh/h) ■2016AM Year of Construction (right turn) ■2016 PM Year of Construction (right turn)

BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)				
CHR(s) Channelised Right Turn (short)		BAL Basic Left Turn	AUL Auxillary Left Turn				
Fig No. E2 - K	Intersection of Cecil P	Plains-Moonie Road/Duntroon Road - Turn Warrant Assessment - (CGPF_DA8)					
Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/0			21/03/2013				
Project No:	CEB06413	Prepared by: Jeffrey Baczynski	aczynski Document Date: 5/06/2013				

2017 AM First Year of Operations (right turn)
 2017 PM First Year of Operations (right turn)
 2027 AM 10 Year Design Horizon (right turn)
 2027 PM 10 Year Design Horizon (right turn)

G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION

OPERATIONAL ANALYSIS - SUMMARY OF RESULTS										
Scenario			Mornin	ig Peak	g Peak			Afternoon Peak		
		Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Vo	lumes	44 vehs	0.02	14 secs	1 m	57 vehs	0.02	14 secs	1 m	√
2015 Year of Construction (TV	VAF_DA9)	96 vehs	0.03	14 secs	1 m	108 vehs	0.03	14 secs	1 m	√
2016 Year of Construction (CC	GPF_DA8)	422 vehs	0.16	14 secs	6 m	434 vehs	0.16	14 secs	6 m	√
2016 1st Year of Operations (T	WAF_DA9)	422 vehs	0.16	14 secs	6 m	434 vehs	0.16	14 secs	6 m	✓
2017 1st Year of Operations (C	GPF_DA8)	224 vehs	0.08	14 secs	3 m	238 vehs	0.07	14 secs	3 m	✓
2026 10 Year Design Horizon (T	TWAF_DA9)	413 vehs	0.15	14 secs	6 m	428 vehs	0.15	14 secs	6 m	✓
2027 10 Year Design Horizon (0	CGPF_DA8)	418 vehs	0.15	14 secs	6 m	434 vehs	0.15	14 secs	6 m	✓
Fig No. E2 - L						Cardno oing the Future				

Prepared by: Damien Scutt

306413 Prepared by: Jeffrey Baczynski Document D.

G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xisx]B4-D

Date of Inspection: 21/03/2013

Document Date: 5/06/2013

Project: SGP SREIS RIA

Project No: CEB06413

Fig No. E3 - A

Intersection of Dalby-Cecil Plains Road/Wanka Road - Locality Plan

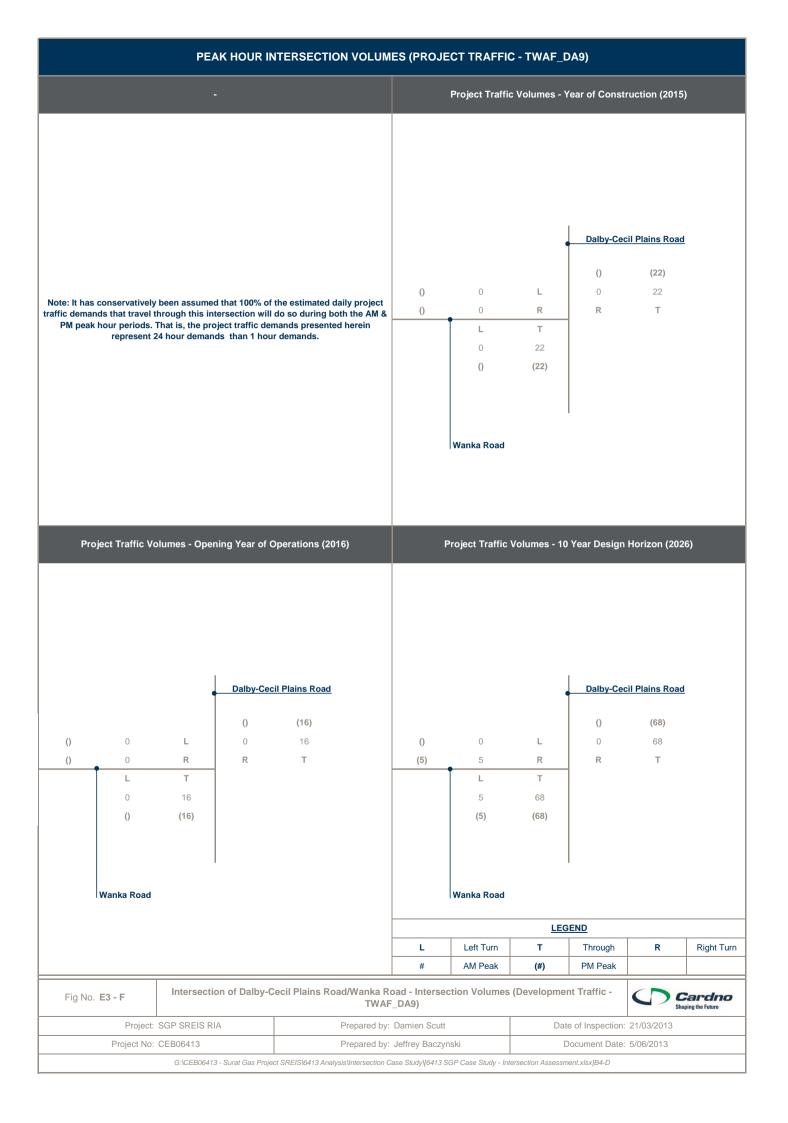
Project: SGP SREIS RIA

Prepared by: Damien Scutt

Date of Inspection: 21/03/2013

Project No: CEB06413 Prepared by: Jeffrey Baczynski

Occument Date: 5/06/2013


G:CEB06413 - Surat Gas Project SREISI6413 Analysis Untersection Case Study - Intersection Assessment.xlsx]B4-D

INTERSECTION DETAILS								
Appr	roach	Road Name	Jurisdiction					
Nort	thern	Dallby-Cecil Plains Road	Toowoomba Regional Council					
Sour	thern	Dallby-Cecil Plains Road	Toowoomba Regional Council					
Wes	stern	Wanka Road	Toowoomba Regional Council					
SPEED LIMITS								
Аррг	roach	Speed Limit	Comment					
Nort	thern	100 km/h	Deafult Rural Speed Limit					
Sour	thern	100 km/h	Deafult Rural Speed Limit					
Wes	stern	100 km/h	Deafult Rural Speed Limit					
TURN TREATMENTS								
Appr	roach	Left Turn	Right Turn					
Northern		Nil	Nil					
Sour	thern	Nil	Nil					
Wes	stern	Nil	Nil					
		SIGHT DISTANCES						
Appr	roach	Safe Intersection Sight Distance	Approach Stopping Distance					
Nort	thern	300m +	200m +					
Sour	thern	265m	190m					
Wes	stern	300m +	200m +					
		PAVEMENT CONDITIONS						
Appr	roach	Condition	Comments					
Nort	thern	Sealed	-					
Sout	thern	Sealed	-					
Wes	stern	Loose Gravel	-					
Fig No. E3 - C	Intersectio	n of Dalby-Cecil Plains Road/Wanka Road - Physical	Properties Cardno Shaping the Future					
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013					
Project No:		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013					
		ct SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Int						

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - TWAF_DA9) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2015)** AM Peak 8:00am to 9:00am 4:45pm to 5:45pm PM Peak Dalby-Cecil Plains Road **Dalby-Cecil Plains Road** (1) (25) (1) (27) (4) L 4 21 (4) 2 L 22 (2) 0 R R (2) 0 R Т L Т L 0 21 0 22 () (18)() (19)Wanka Road Wanka Road **LEGEND GROWTH FACTOR** Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2015 3.00% 1.06 **Background Traffic Volumes - Opening Year of Operations (2016)** Background Traffic Volumes - 10 Year Design Horizon (2026) **Dalby-Cecil Plains Road Dalby-Cecil Plains Road** (1) (27) (1) (35) (4) L 23 (6) L 29 (2) 0 R R (3) 0 R L Т L 0 23 0 29 (20) (25) Wanka Road Wanka Road **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Future Year Growth Rate** Factor Base Year Factor **Base Year** 2013 3.00% 2013 2026 3.00% 1.39 Intersection of Dalby-Cecil Plains Road/Wanka Road - Intersection Volumes (Background Traffic -Cardno Shaping the Future Fig No. E3 - D TWAF_DA9) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

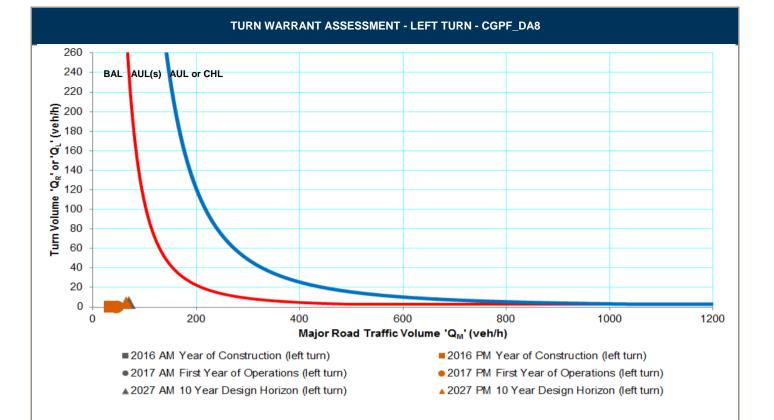
PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - CGPF_DA8) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2016)** AM Peak 8:00am to 9:00am 4:45pm to 5:45pm PM Peak Dalby-Cecil Plains Road **Dalby-Cecil Plains Road** (1) (25) (1) (27) (4) L 4 21 (4) 2 L 23 (2) 0 R R (2) 0 R Т L Т L 0 21 0 23 () (18)() (20)Wanka Road Wanka Road **LEGEND GROWTH FACTOR** Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2016 3.00% 1.09 **Background Traffic Volumes - Opening Year of Operations (2017)** Background Traffic Volumes - 10 Year Design Horizon (2027) **Dalby-Cecil Plains Road Dalby-Cecil Plains Road** (1) (28) (1) (36) (4) L 24 (6) L 30 (2) 0 R R (3) 0 R L Т L 0 24 0 30 (20) (26) Wanka Road Wanka Road **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Future Year Growth Rate** Factor Base Year Factor **Base Year** 2013 3.00% 1.12 2013 2027 3.00% 1.42 Intersection of Dalby-Cecil Plains Road/Wanka Road - Intersection Volumes (Background Traffic -Cardno Shaping the Future Fig No. E3 - E CGPF_DA8) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

TURN WARRANT ASSESSMENT - LEFT TURN - TWAF_DA9 260 240 AUL(s) AUL or CHL 220 200 180 **o** 160 o. 140 120 **Turn Volume** 100 80 60 40 20 0 200 400 600 800 1000 1200 Major Road Traffic Volume 'QM' (veh/h) ■2015 AM Year of Construction (left turn) ■2015 PM Year of Construction (left turn) • 2016 AM First Year of Operations (left turn) • 2016 PM First Year of Operations (left turn) ▲ 2026 AM 10 Year Design Horizon (left turn) ▲ 2026 PM 10 Year Design Horizon (left turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		

TURN WARRANT ASSESSMENT - RIGHT TURN - TWAF_DA9 260 BAR CHR(s) CHR 240 220 (**k** 200 180 0 160 **◦** 140 Turn Volume 100 80 60 40 20 0 600 0 200 400 800 1000 1200 Major Road Traffic Volume 'QM' (veh/h) ■2015 AM Year of Construction (right turn) ■2015 PM Year of Construction (right turn)

▲ 2026 AM 10 Year Des	sign Horizon (right turn) 🛦	2026 PM 10 Year Des	ign Horizon (right turn)	


BAR Basic Right Turn

CHR Channelised Right Turn

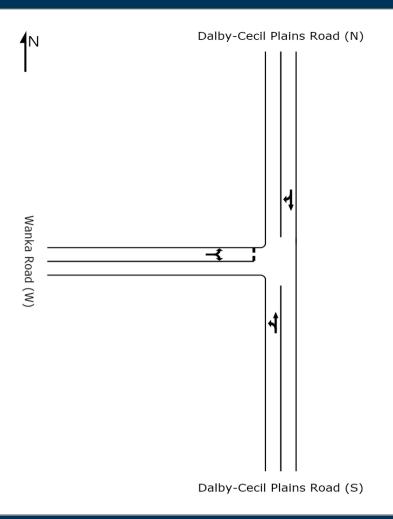
CHR(s) Channelised	Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		
Fig No. E3 - J	Intersection of Dalby	-Cecil Plains Road/Wanka Road - Turn Warrant Asses	esment - (TWAF_DA9) Cardno Shaping the Future		
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013		
Project No: CEB06413		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013		
	G:\CEB06413 - Surat Gas Proje	ct SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Int	tersection Assessment.xlsx]B4-D		


AUL(S) Auxillary Left Turn (Short)

• 2016 AM First Year of Operations (right turn) • 2016 PM First Year of Operations (right turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn

TURN WARRANT ASSESSMENT - RIGHT TURN - CGPF_DA8



BAR Basic Right	Turn	CHR Channelised Right Turn		ft Turn (Short)
CHR(s) Channelised	Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Le	ft Turn
Fig No. E3 - K	Intersection of Dalby	-Cecil Plains Road/Wanka Road - Turn Warrant Asse	essment - (CGPF_DA8)	Cardno

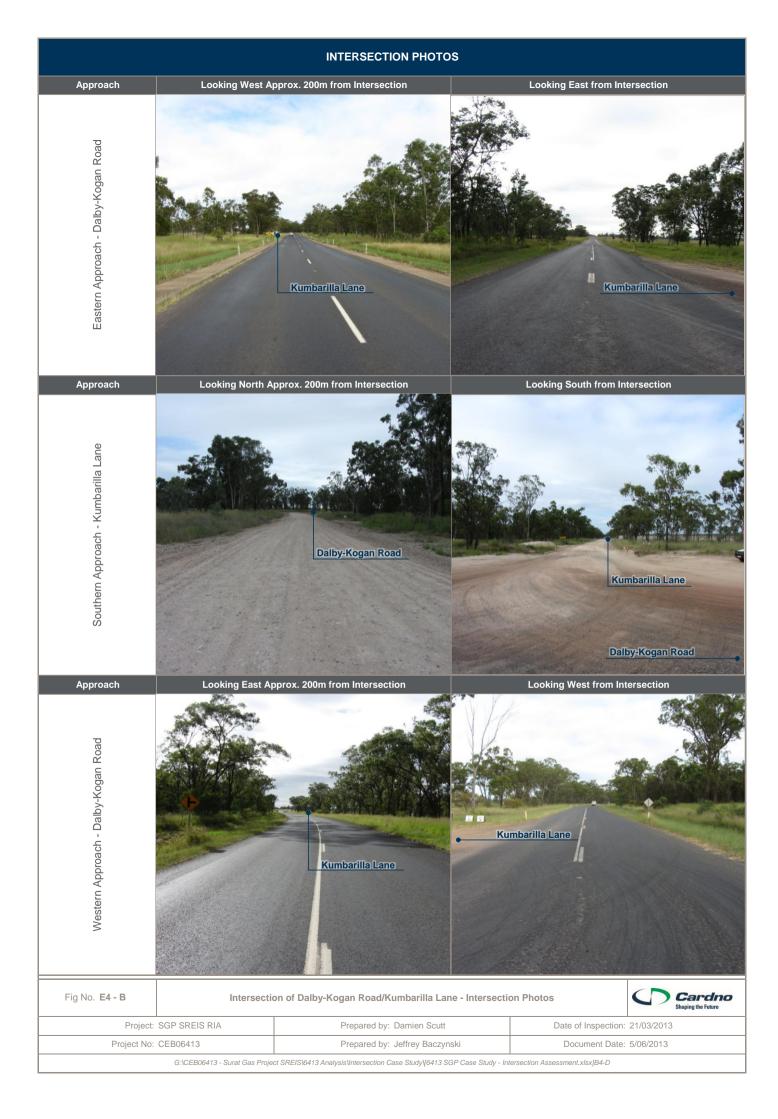
2017 AM First Year of Operations (right turn)
 2017 PM First Year of Operations (right turn)
 2027 AM 10 Year Design Horizon (right turn)
 2027 PM 10 Year Design Horizon (right turn)

		Shaping the Future
Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013
G:\CEB06413 - Surat Gas Proie	ct SREIS\6413 Analysis\Intersection Case Study\6413 SGP Case Study - In	tersection Assessment.xlsx1B4-D

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION

OPERATIONAL ANALYSIS - SUMMARY OF RESULTS

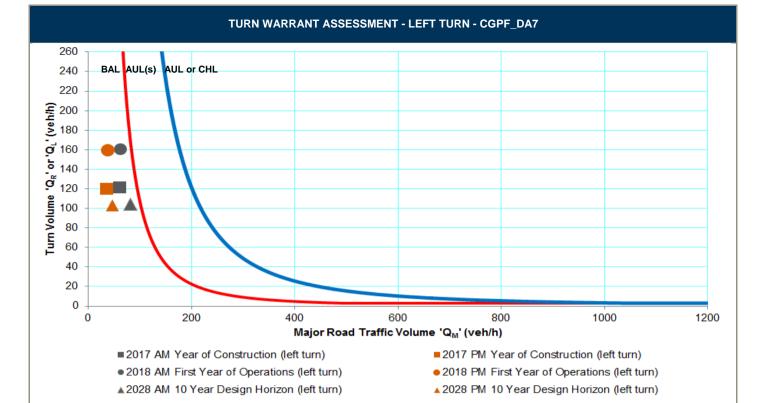
		Mornin	g Peak		Afternoon Peak			ple	
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Volumes	53 vehs	0.02	14 secs	1 m	54 vehs	0.02	14 secs	1 m	✓
2015 Year of Construction (TWAF_DA9)	103 vehs	0.03	14 secs	1 m	103 vehs	0.03	14 secs	1 m	✓
2016 Year of Construction (CGPF_DA8)	91 vehs	0.03	14 secs	1 m	92 vehs	0.03	14 secs	1 m	✓
2016 1st Year of Operations (TWAF_DA9)	91 vehs	0.03	14 secs	1 m	92 vehs	0.03	14 secs	1 m	✓
2017 1st Year of Operations (CGPF_DA8)	112 vehs	0.03	14 secs	1 m	114 vehs	0.03	14 secs	2 m	√
2026 10 Year Design Horizon (TWAF_DA9)	226 vehs	0.06	14 secs	3 m	227 vehs	0.06	14 secs	3 m	✓
2027 10 Year Design Horizon (CGPF_DA8)	167 vehs	0.05	14 secs	2 m	168 vehs	0.05	14 secs	2 m	√


Fig No. E3 - L

Intersection of Dalby-Cecil Plains Road/Wanka Road - Operational Assessment

Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013

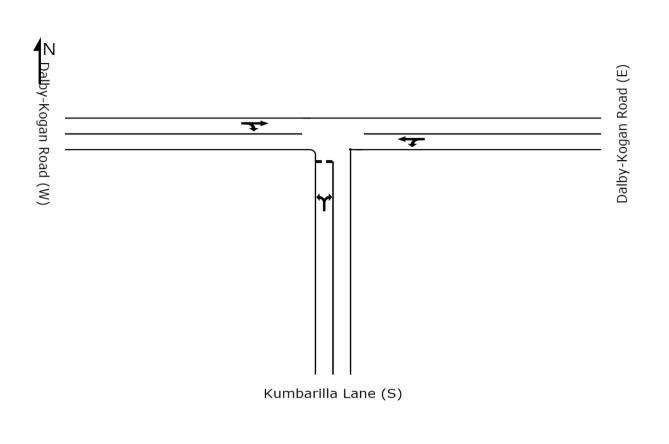

LOCALITY PLAN CGPF - DA7 Roads Higher order Lower order Preferred Route **AERIAL PHOTO** Dalby-Kogan Road Cardno Shaping the Future Fig No. **E4 - A** Intersection of Dalby-Kogan Road/Kumbarilla Lane - Locality Plan Project: SGP SREIS RIA Date of Inspection: 21/03/2013 Prepared by: Damien Scutt Project No: CEB06413 Document Date: 5/06/2013 Prepared by: Jeffrey Baczynski G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.x\lsx]B4-D



		INTERSECTION DETAILS					
Appr	oach	Road Name	Jurisdiction				
Eas	tern	Dalby-Kogan Road	Western Downs Regional Council				
Sout	thern	Kumbarilla Lane	Western Downs Regional Council				
Wes	stern	Dalby-Kogan Road	Western Downs Regional Council				
		SPEED LIMITS					
Appr	oach	Speed Limit	Comment				
Eas	tern	100 km/h	Deafult Rural Speed Limit				
Sout	thern	100 km/h	Deafult Rural Speed Limit				
Wes	stern	100 km/h	Deafult Rural Speed Limit				
TURN TREATMENTS							
Appr	oach	Left Turn	Right Turn				
Eas	tern	Nil	Nil				
Sout	thern	Nil	Nil				
Wes	stern	Nil	Nil				
		SIGHT DISTANCES					
Appr	oach	Safe Intersection Sight Distance	Approach Stopping Distance				
Eas	tern	300m +	200m +				
Sout	thern	300m +	200m +				
Wes	stern	300m +	200m +				
		PAVEMENT CONDITIONS					
Appr	oach	Condition	Comments				
Eas	tern	Sealed	-				
Sout	thern	Loose Gravel/Sealed	First 600m unsealed (approx).				
Wes	stern	Sealed	-				
Fig No. E4 - C	Intersection	on of Dalby-Kogan Road/Kumbarilla Lane - Physical F	Properties Cardno Shaping the Future				
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013				
Project No:		Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013				
. 10,000 110.		ct SREIS\6413 Analysis\Intersection Case Study\(6413 SGP Case Study - Int					

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - CGPF_DA7) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2017)** 7:15am to 8:15am AM Peak 4:30pm to 5:30pm PM Peak Dalby-Kogan Road Dalby-Kogan Road (136)49 Т (152)55 (24)34 R (27)38 R L R 56 (33) L R 63 (37) 13 7 L 4 (3) 15 8 L 4 (3) (34)(38)(38) (43)Kumbarilla Lane Kumbarilla Lane **GROWTH FACTOR LEGEND** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2017 3.00% 1.12 Background Traffic Volumes - 10 Year Design Horizon (2028) **Background Traffic Volumes - Opening Year of Operations (2018)** Dalby-Kogan Road Dalby-Kogan Road (156) Т (197) 71 (28) 39 R (35) 49 R L R 64 (38) L R 81 (48) 15 8 5 (3) 19 10 6 (4) (39) (44)(49) (55) Kumbarilla Lane Kumbarilla Lane **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Future Year Growth Rate** Factor Base Year Factor **Base Year** 2013 3.00% 2013 2028 3.00% 1.45 Intersection of Dalby-Kogan Road/Kumbarilla Lane - Intersection Volumes (Background Traffic -Cardno Shaping the Future Fig No. **E4 - D** CGPF_DA7) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - CGPF_DA7) **Project Traffic Volumes - Year of Construction (2017)** Dalby-Kogan Road () 0 Т Note: It has conservatively been assumed that 100% of the estimated daily project 0 R traffic demands that travel through this intersection will do so during both the AM & PM peak hour periods. That is, the project traffic demands presented herein L R 0 () represent 24 hour demands than 1 hour demands. 0 116 116 (116) () (116)Kumbarilla Lane **Project Traffic Volumes - Opening Year of Operations (2018)** Project Traffic Volumes - 10 Year Design Horizon (2028) Dalby-Kogan Road Dalby-Kogan Road () Т () 0 (1) R () 0 R L R 0 () L R 0 () 155 155 (155) 0 98 98 (98) (1) (155)(98) Kumbarilla Lane Kumbarilla Lane Intersection of Dalby-Kogan Road/Kumbarilla Lane - Intersection Volumes (Development Traffic -Cardno Shaping the Future Fig No. **E4 - E** CGPF_DA7) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 21/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:VCEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D


BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn

TURN WARRANT ASSESSMENT - RIGHT TURN - CGPF_DA7 BAR CHR(s) CHR Major Road Traffic Volume 'Q_M' (veh/h) ■2017 PM Year of Construction (right turn) ■2017 AM Year of Construction (right turn)

BAR Basic Right Turn		CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)
CHR(s) Channelised Right Turn (short)		BAL Basic Left Turn	AUL Auxillary Left Turn
Fig No. E4 - G	Intersection of Dalby	y-Kogan Road/Kumbarilla Lane - Turn Warrant Asses:	sment - (CGPF_DA7) Cardno Shaping the Future
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013
Project No:	CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013
	G:\CEB06413 - Surat Gas Proje	ct SREIS\6413 Analysis\Intersection Case Study\6413 SGP Case Study - Int	ersection Assessment.xlsx]B4-D

2018 AM First Year of Operations (right turn)
 2018 PM First Year of Operations (right turn)
 2028 AM 10 Year Design Horizon (right turn)
 2028 PM 10 Year Design Horizon (right turn)

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION

OPERATIONAL	ANAI VCIC.	. CHIMMADV	OF PEGIII TO

		Mornin	ig Peak		Afternoon Peak			ple	
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable
2013 Surveyed Traffic Volumes	172 vehs	0.05	14 secs	2 m	282 vehs	0.10	14 secs	5 m	✓
2017 Year of Construction (CGPF_DA7)	438 vehs	0.22	15 secs	7 m	560 vehs	0.33	15 secs	12 m	√
2018 1st Year of Operations (CGPF_DA7)	525 vehs	0.30	15 secs	10 m	653 vehs	0.42	15 secs	19 m	√
2028 10 Year Design Horizon (CGPF_DA7)	455 vehs	0.21	15 secs	7 m	616 vehs	0.36	15 secs	14 m	√


Fig No. **E4 - H**

Intersection of Dalby-Kogan Road/Kumbarilla Lane - Operational Assessment

Project No: CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013
Project: SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 21/03/2013

LOCALITY PLAN Roads Higher order Lower order Preferred Route **AERIAL PHOTO** Cardno Shaping the Future Fig No. **E5 - A** Intersection of Leichhardt Highway/Leichhardt Creek Taroom Road - Locality Plan Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 20/03/2013 Project No: CEB06413 Document Date: 5/06/2013 Prepared by: Jeffrey Baczynski $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

		INTERSECTION DETAILS					
Appr	roach	Road Name	Jurisdiction				
Nort	thern	Leichhardt Highway	Western Downs Regional Council				
Eas	stern	Leichhardt Creek Taroom Road	Western Downs Regional Council				
Sout	thern	Leichhardt Highway	Western Downs Regional Council				
		SPEED LIMITS					
Аррг	roach	Speed Limit	Comment				
Nort	thern	100 km/h	Default Rural Speed Limit				
Eas	stern	100 km/h	Default Rural Speed Limit				
Sour	thern	100 km/h	Default Rural Speed Limit				
		TURN TREATMENTS					
Аррг	roach	Left Turn	Right Turn				
Nort	thern	Nil	Nil				
Eas	stern	Nil	Nil				
Sout	thern	Nil	Nil				
		SIGHT DISTANCES					
Appr	roach	Safe Intersection Sight Distance	Approach Stopping Distance				
Nort	thern	300m +	200m +				
Eas	stern	300m +	200m +				
Sour	thern	300m +	200m +				
		PAVEMENT CONDITIONS					
Appr	roach	Condition	Comments				
Nort	thern	Sealed	-				
Eas	stern	Loose Gravel	-				
Sour	thern	Sealed	-				
Fig No. E5 - C	Intersection of Le	ichhardt Highway/Leichhardt Creek Taroom Road - P	hysical Properties Cardno Shaping the Future				
	SGP SREIS RIA	Prepared by: Damien Scutt Date of Inspection: 19/03/2013					
Project No:	CEB06413	Prepared by: Jeffrey Baczynski ct SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Case Study	Document Date: 5/06/2013				

PEAK HOUR INTERSECTION VOLUMES (BACKGROUND TRAFFIC - CGPF_DA2) Surveyed Traffic Volumes (2013) **Background Traffic Volumes - Year of Construction (2016)** AM Peak 7:30am to 8:30am 4:45pm to 5:45pm PM Peak Leichhardt Creek Taroom Road Leichhardt Creek Taroom Road (67) (1) (73)(1) 57 2 Т L Т L R R 0 (2) R 0 (2) 96 4 L 2 (1) 105 2 (1) (63)(4) (69) (4) Leichhardt Highway Leichhardt Highway **LEGEND GROWTH FACTOR** L Left Turn т Through R Right Turn Base Year Future Year | Growth Rate Factor # AM Peak (#) PM Peak 2013 2016 3.00% 1.09 **Background Traffic Volumes - Opening Year of Operations (2017)** Background Traffic Volumes - 10 Year Design Horizon (2027) Leichhardt Creek Taroom Road Leichhardt Creek Taroom Road (1) (95) (1) 3 81 Т L R R 0 (2) R 0 (3) 108 2 (1) 136 6 3 (1) (89) Leichhardt Highway Leichhardt Highway **GROWTH FACTOR GROWTH FACTOR** Future Year | Growth Rate **Future Year Growth Rate** Base Year Factor **Base Year** Factor 2013 2017 3.00% 2013 2027 3.00% 1.42 Intersection of Leichhardt Highway/Leichhardt Creek Taroom Road - Intersection Volumes (Background Cardno Fig No. E5 - D Traffic - CGPF_DA2) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 19/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

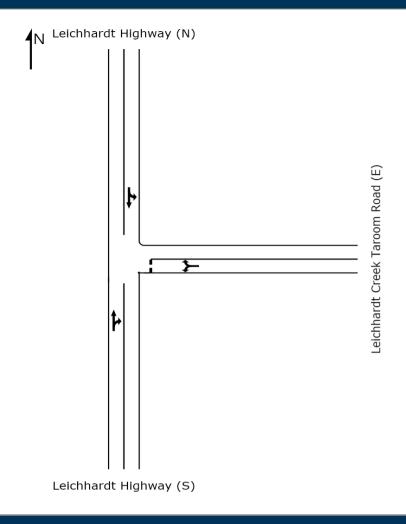

PEAK HOUR INTERSECTION VOLUMES (PROJECT TRAFFIC - CGPF_DA2) **Project Traffic Volumes - Year of Construction (2016)** Leichhardt Creek Taroom Road (16) (36) 36 Note: It has conservatively been assumed that 100% of the estimated daily project Т L traffic demands that travel through this intersection will do so during both the AM &PM peak hour periods. That is, the project traffic demands presented herein R R 36 (36) represent 24 hour demands than 1 hour demands. 16 54 L 54 (54) (16)(54)Leichhardt Highway **Project Traffic Volumes - Opening Year of Operations (2017)** Project Traffic Volumes - 10 Year Design Horizon (2027) Leichhardt Creek Taroom Road Leichhardt Creek Taroom Road (58) (26) (47) 32 58 26 47 Т L L R R 58 (58) R R 47 (47) 32 77 77 (77) 26 78 78 (78) (77) (26) (78) Leichhardt Highway Leichhardt Highway Intersection of Leichhardt Highway/Leichhardt Creek Taroom Road - Intersection Volumes Cardno Shaping the Future Fig No. **E5 - E** (Development Traffic - CGPF_DA2) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 19/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

PEAK HOUR INTERSECTION VOLUMES (DESIGN TRAFFIC VOLUMES - CGPF_DA2) **Design Traffic Volumes - Year of Construction (2016)** Leichhardt Creek Taroom Road (89) (37)38 Т L R 36 (38) 121 58 L 56 (55) (85) (58)Leichhardt Highway Design Traffic Volumes - 10 Year Design Horizon (2027) **Design Traffic Volumes - Opening Year of Operations (2017)** Leichhardt Creek Taroom Road Leichhardt Creek Taroom Road (107) (59) (121) (48) 96 61 107 50 Т L L R R 58 (61) R R 47 (50) 139 82 80 (79) 162 83 81 (79) (102)(115) (83) Leichhardt Highway Leichhardt Highway Intersection of Leichhardt Highway/Leichhardt Creek Taroom Road - Intersection Volumes (Design Cardno Shaping the Future Fig No. E5 - F Traffic - CGPF_DA2) Project: SGP SREIS RIA Prepared by: Damien Scutt Date of Inspection: 19/03/2013 Project No: CEB06413 Prepared by: Jeffrey Baczynski Document Date: 5/06/2013 $G: \label{lem:condition} G: \label{lem:condition} G: \label{lem:condition} Case Study \ | \ GA13 \ SGP \ Case \ Study \ - \ Intersection \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ B4-D \ | \ Assessment. x | \ x | \ Assessment. x | \ Assessment.$

TURN WARRANT ASSESSMENT - LEFT TURN - CGPF_DA2 260 AUL or CHL BAL AUL(s) 240 220 200 180 **o** 160 9 140 Turn Volume 'QR' 120 100 80 60 40 20 0 0 200 400 600 800 1000 1200 Major Road Traffic Volume 'Q_M' (veh/h) ■2016 AM Year of Construction (left turn) ■2016 PM Year of Construction (left turn) 2017 AM First Year of Operations (left turn) • 2017 PM First Year of Operations (left turn) ▲ 2027 AM 10 Year Design Horizon (left turn) ▲ 2027 PM 10 Year Design Horizon (left turn)

BAR Basic Right Turn	CHR Channelised Right Turn	AUL(S) Auxillary Left Turn (Short)		
CHR(s) Channelised Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn		

TURN WARRANT ASSESSMENT - RIGHT TURN - CGPF_DA2



BAR Basic Right 1	Γurn	CHR Channelised Right Turn	AUL(S) Auxillary Let	y Left Turn (Short)				
CHR(s) Channelised	Right Turn (short)	BAL Basic Left Turn	AUL Auxillary Left Turn					
Fig.No. FF. O	Intersection of Leichh	nardt Highway/Leichhardt Creek Taroom Road - Turn	Warrant Assessment -	(D Complete				

2017 AM First Year of Operations (right turn)
 2017 PM First Year of Operations (right turn)
 2027 AM 10 Year Design Horizon (right turn)
 2027 PM 10 Year Design Horizon (right turn)

Fig No. E5 - G	intersection of Leichr	(CGPF_DA2)									
Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 19/03/2013								
Project No:	CEB06413	Prepared by: Jeffrey Baczynski Document Date: 5/06/2013									
	G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D										

OPERATIONAL ANALYSIS - INTERSECTION CONFIGURATION

OPERATIONAL ANALYSIS - SUMMARY OF RESULTS

		Mornin	ıg Peak			elble				
Scenario	Demand	DOS	Critical Delay	95th%ile Queue	Demand	DOS	Critical Delay	95th%ile Queue	Acceptable	
2013 Surveyed Traffic Volumes	171 vehs	0.06	14 secs	3 m	145 vehs	0.04	14 secs	2 m	√	
2016 Year of Construction (CGPF_DA2)	407 vehs	0.12	15 secs	6 m	381 vehs	0.12	15 secs	4 m	√	
2017 1st Year of Operations (CGPF_DA2)	543 vehs	0.20	15 secs	7 m	516 vehs	0.20	15 secs	7 m	✓	
2027 10 Year Design Horizon (CGPF_DA2)	558 vehs	0.19	15 secs	8 m	522 vehs	0.19	15 secs	7 m	√	

Fig No. **E5 - H**

 $Intersection\ of\ Leichhardt\ Highway/Leichhardt\ Creek\ Taroom\ Road\ -\ Operational\ Assessment$

Project:	SGP SREIS RIA	Prepared by: Damien Scutt	Date of Inspection: 19/03/2013				
Project No:	CEB06413	Prepared by: Jeffrey Baczynski	Document Date: 5/06/2013				

G:\CEB06413 - Surat Gas Project SREIS\6413 Analysis\Intersection Case Study\[6413 SGP Case Study - Intersection Assessment.xlsx]B4-D

Surat Gas Project SREIS

APPENDIX F
Case Studies: Pavement Assessment

Pavement Impact Assessment Methodology

As part of the case studies component of the SREIS, a pavement impact assessment was undertaken to the demonstrate the level of further assessment that would still be required to be completed through subsequent RIAs and RMPs as the SGP progresses.

The pavement impact assessment methodology adopted by Cardno is representatively shown in Figure F1. This methodology is consistent with the assessment approach detailed in TMR's *Guidelines for Road Impacts of Development*.

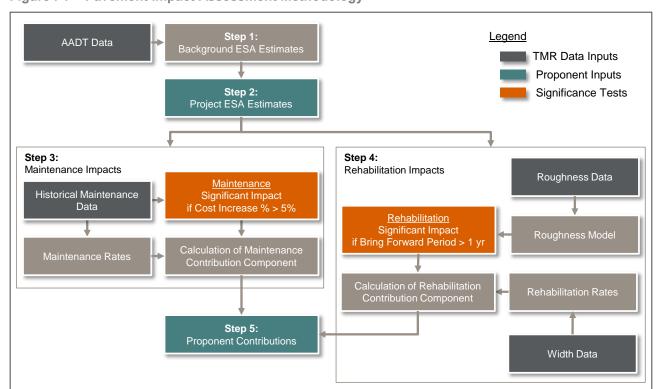


Figure F1 Pavement Impact Assessment Methodology

Scope of Case Study Pavement Impact Assessment

The following road sections were considered to provide an example of the detailed pavement impact assessment methodology:

- > Warrego Highway (Chinchilla to Miles) (TMR Ref: 18C: 80.175km to 126.754km)
- > Millmerran-Cecil Plains Road (TMR Ref: 3251: 0.000km to 35.610km)
- > Moonie Highway (Dalby to Nandi) (TMR Ref: 35A: 0.000km to 11.000km)

The sections were chosen as they have the potential to experience significant impacts on pavement as a result of traffic movements associated with project.

PIA Assumptions

The identified roads were divided into directional sections consistent with those used for traffic modelling such that the existing background ESA loadings (Step 1), anticipated project ESA loadings (Step 2), seal width and roughness are generally homogenous for each assessed section.

The following values have been assumed for assessment parameters:

- > 3 counts annual background roughness increase
- > discount rate of 6.0%p.a.
- > inflation rate of 4.4%p.a
- > roughness intervention level of 120 counts (with the exception of those roads where TMR has adopted a higher intervention threshold by way of the existing roughness exceeding 120 counts)

Characteristics for each modelled road section are shown in Table F2 including traffic volumes, roughness and width.

Step 1: Estimation of Baseline ESAs

For the roads considered in the case study, Figure F-1 identifies the baseline equivalent standard axle (ESA) loadings based on 2011 AADT volumes, heavy vehicle (HV) traffic composition data for each section supplied by TMR and average ESA/HV values for each vehicle types from Austroads 2011 as shown in Table F1. This method means that a representative ESA/HV factor is calculated for each road section rather than a generic regional ESA/HV factor being applied to all sections.

The baseline traffic volumes are also summarised in Table F2

Step 2: Estimation of Project ESAs

The ESA generation of the heavy vehicle movements associated with the project was forecast using the traffic model detailed previously. ESA loadings were calculated yearly based on the annual project traffic which is spatially shown in Appendix C.

The ESA estimate includes consideration of the vehicle type likely to be associated with each delivery type (e.g. it is anticipated that concrete deliveries will occur via Austroads Class 4). A generic ESA/HV factor was not adopted for project traffic, but rather loaded and unloaded ESA values were used to reflect the directionality of heavy vehicle movements to and from the project site. This approach is appropriate as it results in the most representative forecasts of the project's ESA generation.

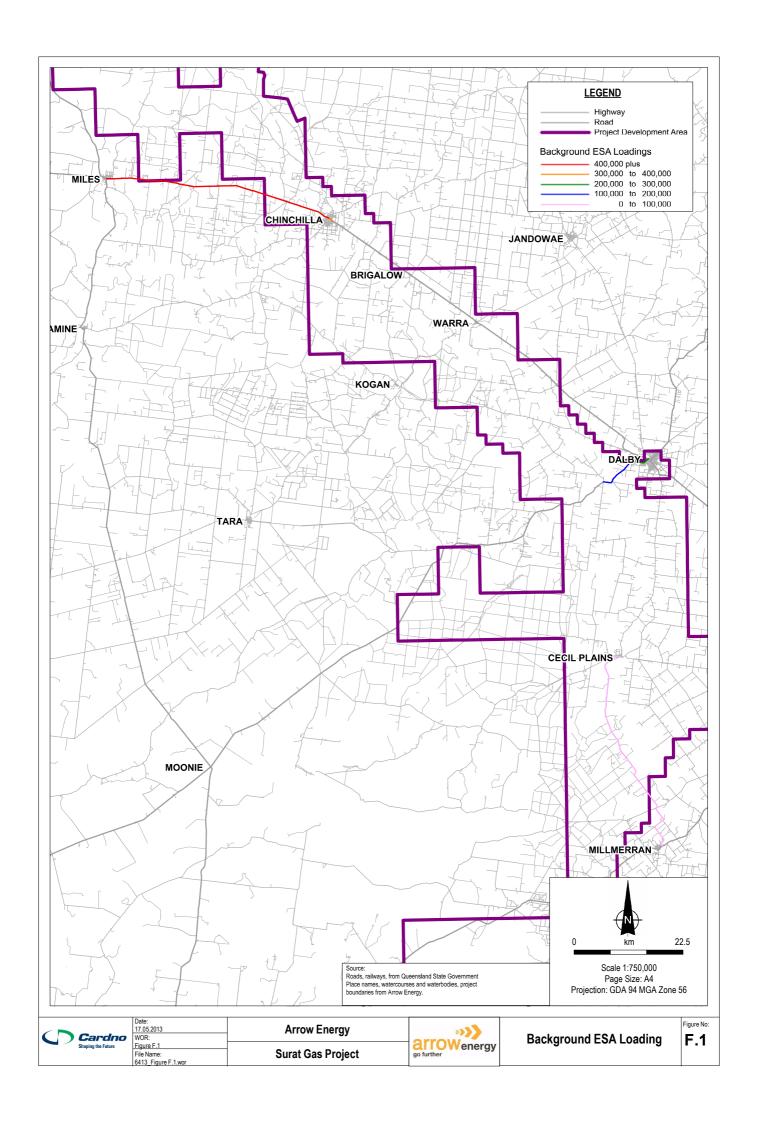
Table F3 identifies the project's estimate ESA loadings by year.

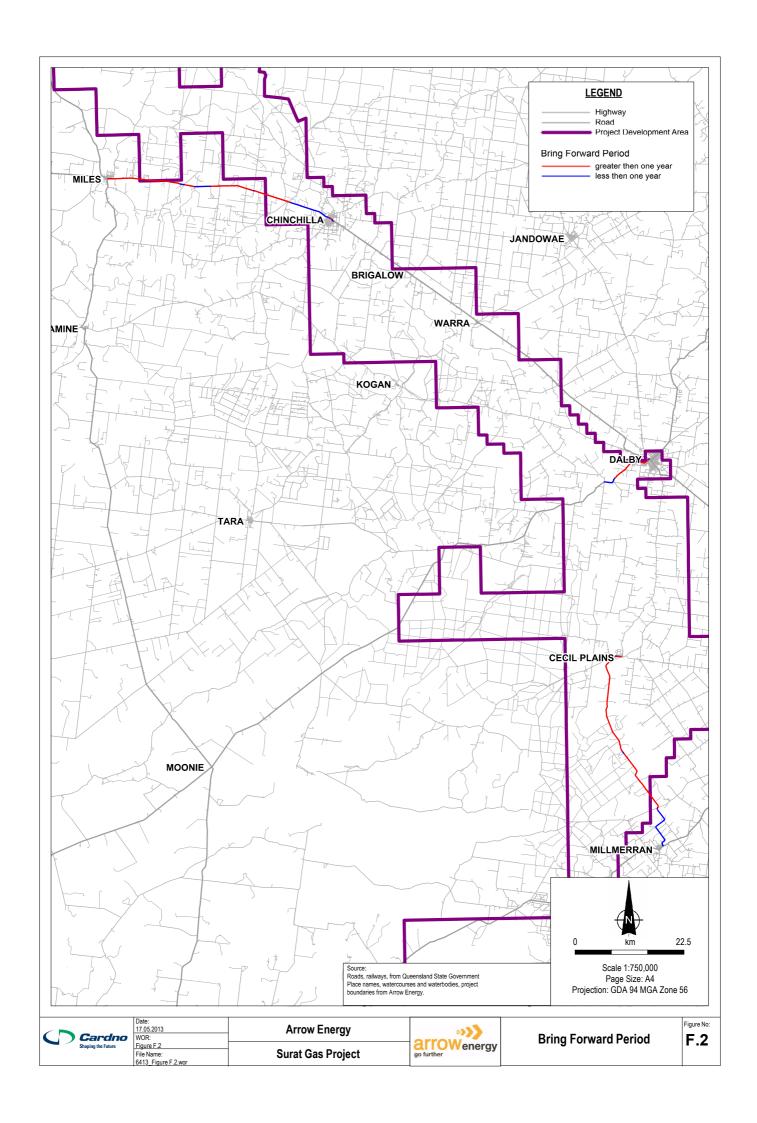
Step 3: Calculation of Maintenance Impacts

The proponent's obligation towards routine maintenance of pavement sections has been calculated based on the percentage increase on each road segment as a result of the project impacts on the chosen roads. Table F5 summarises the potential increase in pavement maintenance cost based on the increase in project ESA loadings beyond the baseline loadings. Typically the proponent contributes to the additional maintenance costs associated with increases in heavy vehicles in consultation with road authorities. For the SGP, monetary contributions have not yet been identified.

Step 4: Calculation of Rehabilitation Impacts

Table F4 and Figure F-2 summarises the reduction in estimated service life of the assessed pavement as a result of the project. In accordance with TMR's *Guidelines to Road Impacts of Development*, the project is defined as having a significant impact on the timing of pavement rehabilitation only where the acceleration time exceeds one year.


The estimation of the impacts on pavement rehabilitation relies upon roughness as the sole measure of pavement distress and includes consideration of:


- > existing pavement roughness
- > constant annual roughness deterioration rate
- > pavement roughness intervention threshold

This assessment has identified those sections where a significant impact is anticipated on the timing of rehabilitation based on the project case modelled. Typically the proponent contributes to the cost difference required in bringing the pavement rehabilitation forward from that planned in consultation with road authorities. For the SGP, monetary contributions have not yet been identified.

Step 5: Proponent Contributions

The estimated proponent contributions from Steps 4 and 5 (which have not yet been identified) would be paid to the relevant road authority. Rehabilitation contributions are typically required to be paid upfront as the methodology is based on the premise that TMR invests additional funds at present to cover the cost in bringing the works forward at a later date. The payment of maintenance contributions is typically staged and paid on a regular basis to cover ongoing maintenance costs.

ASSESSMENT INPUTS

Roughness Increase 3 counts/year Terminal Roughness 120 counts

Inflation Rate 4.39% p.a. (compound)
Discount Rate 6.00% p.a. (compound)
Heavy Vehicle Growth Rate 3.00% p.a. (linear)

Assessment/Cost Base Year 2013

AVERAGE ESAs

2C: 2-Axle Trucks and Buses	0.8 ESAs
2C: 3-Axle Trucks and Buses	1.5 ESAs
2E: 4-Axle Trucks	1.9 ESAs
2F: 3-Axle Articulated Trucks	1.8 ESAs
2G: 4-Axle Articulated Trucks	1.8 ESAs
2H: 5-Axle Articulated Trucks	2.3 ESAs
2I: 6-Axle Articulated Trucks	2.7 ESAs
2J: B-Double	3.0 ESAs
2K: Double Road Trains	3.4 ESAs
2L: Triple Road Trains	3.8 ESAs

Source/Notes

TMR Fitzroy Notes for Contribution Calculations (V28) TMR Fitzroy Notes for Contribution Calculations (V28)

ABS6427.0 Road and Bridge Construction Queensland GARID Appendix G Bring Forward Methodology TMR Fitzroy Notes for Contribution Calculations (V28)

Establishment of a New Pavement Maintenance Database - Stage 1 and 2 Analysis (AP-R394-11)

Table F1	Global In	puts and Aver	age ESAs
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

	F	ROAD DETA	ILS				TRAFFIC VOLUMES						ROUGH	INESS	WIE	OTH
TMR	Chainage	Chainage			AADT					Survey Year	HV	Base Year	Roughness	Average	Total	Section
ROAD	Start		Direction	Length	Survey Year	AADT	HV %	HV AADT	ESA/HV	ESAs	Growth	ESAs	Survey Year	Roughness	Pavement Width	Width
3251	0.000	0.120	G	0.120 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	197.50	8.00 m	4.00 m
3251 3251	0.000 0.120	0.120 0.210	A G	0.120 km 0.090 km	2012 2012	162 166	20.42% 15.47%	33 26	1.5 1.7	23,871 19,710	3% 3%	24,587 20,301	2013 2013	197.50 187.00	8.00 m 6.22 m	4.00 m
3251	0.120	0.210	A	0.090 km	2012	162	20.42%	33	1.7	23,871	3% 3%	24,587	2013	187.00	6.22 m	3.11 m 3.11 m
3251	0.210	0.250	G	0.040 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	243.00	6.00 m	3.00 m
3251	0.210	0.250	Α	0.040 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	243.00	6.00 m	3.00 m
3251	0.250	0.280	G	0.030 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	243.00	6.00 m	3.00 m
3251	0.250	0.280	A	0.030 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	243.00	6.00 m	3.00 m
3251 3251	0.280 0.280	0.630 0.630	G A	0.350 km 0.350 km	2012 2012	166 162	15.47% 20.42%	26 33	1.7 1.5	19,710 23,871	3% 3%	20,301 24,587	2013 2013	158.51 158.51	6.00 m 6.00 m	3.00 m 3.00 m
3251	0.630	2.090	Ĝ	1.460 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	97.28	6.40 m	3.20 m
3251	0.630	2.090	Ā	1.460 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	97.28	6.40 m	3.20 m
3251	2.090	3.210	G	1.120 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	86.40	6.30 m	3.15 m
3251	2.090	3.210	Α	1.120 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	86.40	6.30 m	3.15 m
3251	3.210	3.940	G	0.730 km	2012	166 162	15.47%	26	1.7	19,710	3%	20,301	2013	72.47	6.38 m	3.19 m
3251 3251	3.210 3.940	3.940 4.430	A G	0.730 km 0.490 km	2012 2012	166	20.42% 15.47%	33 26	1.5 1.7	23,871 19,710	3% 3%	24,587 20,301	2013 2013	72.47 75.69	6.38 m 6.21 m	3.19 m 3.10 m
3251	3.940	4.430	A	0.490 km	2012	162	20.42%	33	1.7	23,871	3%	24,587	2013	75.69	6.21 m	3.10 m
3251	4.430	4.790	G	0.360 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	99.81	6.58 m	3.29 m
3251	4.430	4.790	Α	0.360 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	99.81	6.58 m	3.29 m
3251	4.790	6.440	G	1.650 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	75.96	6.27 m	3.13 m
3251	4.790	6.440	A	1.650 km	2012	162	20.42%	33	1.5	23,871	3%	24,587	2013	75.96	6.27 m	3.13 m
3251 3251	6.440 6.440	6.690 6.690	G A	0.250 km 0.250 km	2012 2012	166 162	15.47% 20.42%	26 33	1.7 1.5	19,710 23,871	3% 3%	20,301 24,587	2013 2013	70.80 70.80	6.76 m 6.76 m	3.38 m 3.38 m
3251	6.690	7.370	Ğ	0.680 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	89.91	7.25 m	3.62 m
3251	6.690	7.370	Ä	0.680 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	89.91	7.25 m	3.62 m
3251	7.370	9.340	G	1.970 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	77.53	6.80 m	3.40 m
3251	7.370	9.340	Α	1.970 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	77.53	6.80 m	3.40 m
3251	9.340	9.630	G	0.290 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	65.31	7.50 m	3.75 m
3251 3251	9.340 9.630	9.630 9.800	A G	0.290 km 0.170 km	2012 2012	162 166	20.42% 15.47%	33 26	1.6 1.7	23,871 19,710	3% 3%	24,587 20,301	2013 2013	65.31 100.59	7.50 m 6.60 m	3.75 m 3.30 m
3251	9.630	9.800	A	0.170 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	100.59	6.60 m	3.30 m
3251	9.800	9.850	G	0.050 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	141.00	6.60 m	3.30 m
3251	9.800	9.850	Α	0.050 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	141.00	6.60 m	3.30 m
3251	9.850	13.580	G	3.730 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	73.63	6.95 m	3.47 m
3251	9.850	13.580	A	3.730 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	73.63	6.95 m	3.47 m
3251 3251	13.580 13.580	13.750 13.750	G A	0.170 km 0.170 km	2012 2012	166 162	15.47% 20.42%	26 33	1.7 1.6	19,710 23,871	3% 3%	20,301 24,587	2013 2013	84.24 84.24	7.00 m 7.00 m	3.50 m 3.50 m
3251	13.750	14.920	Ĝ	1.170 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	86.19	7.00 m	3.50 m
3251	13.750	14.920	Ä	1.170 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	86.19	7.00 m	3.50 m
3251	14.920	16.410	G	1.490 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	95.35	7.00 m	3.50 m
3251	14.920	16.410	Α	1.490 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	95.35	7.00 m	3.50 m
3251	16.410	16.680	G	0.270 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	76.78	6.79 m	3.40 m
3251 3251	16.410 16.680	16.680 19.900	A G	0.270 km 3.220 km	2012 2012	162 166	20.42% 15.47%	33 26	1.6 1.7	23,871 19,710	3% 3%	24,587 20,301	2013 2013	76.78 81.48	6.79 m 6.27 m	3.40 m 3.14 m
3251	16.680	19.900	A	3.220 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	81.48	6.27 m	3.14 m
3251	19.900	21.460	G	1.560 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	77.85	6.03 m	3.01 m
3251	19.900	21.460	Α	1.560 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	77.85	6.03 m	3.01 m
3251	21.460	21.970	G	0.510 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	77.10	6.00 m	3.00 m
3251	21.460	21.970	A	0.510 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	77.10	6.00 m	3.00 m
3251 3251	21.970 21.970	23.140 23.140	G A	1.170 km 1.170 km	2012 2012	166 162	15.47% 20.42%	26 33	1.7 1.6	19,710 23,871	3% 3%	20,301 24,587	2013 2013	78.36 78.36	6.00 m 6.00 m	3.00 m 3.00 m
3251	23.140	23.140	G	0.450 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	103.22	6.00 m	3.00 m
3251	23.140	23.590	A	0.450 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	103.22	6.00 m	3.00 m
3251	23.590	25.060	G	1.470 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	68.50	6.00 m	3.00 m
3251	23.590	25.060	Α	1.470 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	68.50	6.00 m	3.00 m
3251	25.060	25.730	G	0.670 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	72.72	6.00 m	3.00 m
3251	25.060	25.730	A	0.670 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	72.72	6.00 m	3.00 m
3251 3251	25.730 25.730	27.900 27.900	G A	2.170 km 2.170 km	2012 2012	166 162	15.47% 20.42%	26 33	1.7 1.6	19,710 23,871	3% 3%	20,301 24,587	2013 2013	79.86 79.86	6.04 m 6.04 m	3.02 m 3.02 m
02J I	20.100	21.300	^	2.17 U KIII	2012	102	20.42/0	33	1.0	20,011	J /0	27,507	2010	7 3.00	0.04 111	J.UZ III

Table F2	Se	ection Properti	es
Project:	Surat Gas Project	Project No:	CB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

	F	ROAD DETA	ILS		TRAFFIC VOLUMES					ROUGHNESS		WIE	TH			
TMR	Chainage	Chainage			AADT					Survey Year	HV	Base Year	Roughness	Average	Total	Section
ROAD	Start	End	Direction	Length	Survey Year	AADT	HV %	HV AADT	ESA/HV	ESAs	Growth	ESAs	Survey Year	Roughness	Pavement Width	Width
3251	27.900	28.020	G	0.120 km	2012	166	15.47%	26	1.7	19,710	3%	20,301	2013	75.17	6.00 m	3.00 m
3251	27.900	28.020	Α	0.120 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	75.17	6.00 m	3.00 m
3251 3251	28.020 28.020	29.940 29.940	G A	1.920 km 1.920 km	2012 2012	166 162	15.47% 20.42%	26 33	1.6 1.6	19,710 23,871	3% 3%	20,301 24,587	2013 2013	78.78 78.78	6.00 m 6.00 m	3.00 m 3.00 m
3251	29.940	31.190	G	1.920 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	74.66	6.00 m	3.00 m
3251	29.940	31.190	Ä	1.250 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	74.66	6.00 m	3.00 m
3251	31.190	37.830	G	6.640 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	66.02	6.01 m	3.01 m
3251	31.190	37.830	Α	6.640 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	66.02	6.01 m	3.01 m
3251 3251	37.830 37.830	38.895 38.895	G	1.065 km	2012 2012	166 162	15.47% 20.42%	26 33	1.6	19,710 23,871	3% 3%	20,301 24,587	2013 2013	81.96 81.96	6.00 m 6.00 m	3.00 m
3251	37.830 38.950	38.895 44.210	A G	1.065 km 5.260 km	2012	166	20.42% 15.47%	33 26	1.6 1.6	19,710	3% 3%	24,587	2013	74.97	5.82 m	3.00 m 2.91 m
3251	38.950	44.210	A	5.260 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	74.97	5.82 m	2.91 m
3251	44.210	44.300	G	0.090 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	66.00	6.00 m	3.00 m
3251	44.210	44.300	Α	0.090 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	66.00	6.00 m	3.00 m
3251	44.300	44.360	G	0.060 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	93.00	6.00 m	3.00 m
3251 3251	44.300	44.360 44.520	A G	0.060 km	2012 2012	162	20.42%	33	1.6	23,871 19,710	3%	24,587 20,301	2013 2013	93.00	6.00 m	3.00 m
3251	44.360 44.360	44.520 44.520	A	0.160 km 0.160 km	2012	166 162	15.47% 20.42%	26 33	1.6 1.6	23,871	3% 3%	24,587	2013	115.38 115.38	7.13 m 7.13 m	3.56 m 3.56 m
3251	44.520	44.630	Ğ	0.110 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	123.00	12.27 m	6.14 m
3251	44.520	44.630	A	0.110 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	123.00	12.27 m	6.14 m
3251	44.630	44.860	G	0.230 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	100.91	15.02 m	7.51 m
3251	44.630	44.860	Α	0.230 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	100.91	15.02 m	7.51 m
3251	44.860	45.090	G	0.230 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	105.39	17.96 m	8.98 m
3251 3251	44.860 45.090	45.090 45.320	A G	0.230 km 0.230 km	2012 2012	162 166	20.42% 15.47%	33 26	1.6 1.6	23,871 19,710	3% 3%	24,587 20,301	2013 2013	105.39 101.74	17.96 m 19.17 m	8.98 m 9.59 m
3251	45.090	45.320	A	0.230 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	101.74	19.17 m	9.59 m
3251	45.320	45.610	G	0.290 km	2012	166	15.47%	26	1.6	19,710	3%	20,301	2013	92.03	19.34 m	9.67 m
3251	45.320	45.610	Α	0.290 km	2012	162	20.42%	33	1.6	23,871	3%	24,587	2013	92.03	19.34 m	9.67 m
18C	80.175	80.365	G	0.190 km	2012	3,579	14.65%	524	0.0	350,656	3%	361,175	2013	95.74	11.00 m	5.50 m
18C 18C	80.175 80.365	80.365 80.485	A G	0.190 km 0.120 km	2012 2012	3,430 3,579	16.09% 14.65%	552 524	0.0	417,122 350,656	3% 3%	429,636 361,175	2013 2013	95.74 141.42	11.00 m 11.00 m	5.50 m 5.50 m
18C	80.365	80.485	A	0.120 km	2012	3,430	16.09%	552	0.0	417,122	3%	429,636	2013	141.42	11.00 m	5.50 m
18C	80.485	80.615	G	0.130 km	2012	3,579	14.65%	524	0.0	350,656	3%	361,175	2013	158.35	9.00 m	4.50 m
18C	80.485	80.615	A	0.130 km	2012	3,430	16.09%	552	0.0	417,122	3%	429,636	2013	158.35	9.00 m	4.50 m
18C	80.615	80.645	G	0.030 km	2012	3,579	14.65%	524	0.0	350,656	3%	361,175	2013	163.00	9.00 m	4.50 m
18C	80.615	80.645	A	0.030 km	2012	3,430	16.09%	552	0.0	417,122	3%	429,636	2013	163.00	9.00 m	4.50 m
18C 18C	80.645 80.645	80.705 80.705	G	0.060 km	2012 2012	3,579 3,430	14.65% 16.09%	524 552	0.0 0.0	350,656 417,122	3% 3%	361,175 429,636	2013 2013	163.33 163.33	9.00 m 9.00 m	4.50 m 4.50 m
18C	80.705	80.875	A G	0.060 km 0.170 km	2012	3,430	14.65%	524	0.0	350,656	3% 3%	361,175	2013	134.79	12.00 m	6.00 m
18C	80.705	80.875	Ä	0.170 km	2012	3,430	16.09%	552	0.0	417,122	3%	429,636	2013	134.79	12.00 m	6.00 m
18C	80.875	81.045	G	0.170 km	2012	3,579	14.65%	524	0.0	350,656	3%	361,175	2013	75.62	17.21 m	8.60 m
18C	80.875	81.045	Α	0.170 km	2012	3,430	16.09%	552	0.0	417,122	3%	429,636	2013	75.62	17.21 m	8.60 m
18C	81.045	81.255	G	0.210 km	2012	3,579	14.65%	524	0.0	350,656	3%	361,175	2013	75.45	14.07 m	7.04 m
18C 18C	81.045 81.255	81.255 81.505	A G	0.210 km 0.250 km	2012 2012	3,430 2,704	16.09% 21.63%	552 585	0.0 0.0	417,122 449,060	3% 3%	429,636 462,531	2013 2013	75.45 105.60	14.07 m 12.20 m	7.04 m 6.10 m
18C	81.255	81.505	A	0.250 km	2012	2,704	22.57%	600	0.0	424,933	3%	437,681	2013	105.60	12.20 m	6.10 m
18C	81.505	81.755	G	0.250 km	2012	2,704	21.63%	585	0.0	449,060	3%	462,531	2013	64.96	12.60 m	6.30 m
18C	81.505	81.755	Α	0.250 km	2012	2,657	22.57%	600	0.0	424,933	3%	437,681	2013	64.96	12.60 m	6.30 m
18C	81.755	82.425	G	0.670 km	2012	2,704	21.63%	585	0.0	449,060	3%	462,531	2013	115.65	9.21 m	4.60 m
18C	81.755	82.425	A	0.670 km	2012	2,657	22.57%	600	0.0	424,933	3%	437,681	2013	115.65	9.21 m	4.60 m
18C 18C	82.425 82.425	82.775 82.775	G A	0.350 km 0.350 km	2012 2012	2,704 2,657	21.63% 22.57%	585 600	0.0 0.0	449,060 424,933	3% 3%	462,531 437,681	2013 2013	102.71 102.71	9.00 m 9.00 m	4.50 m 4.50 m
18C	82.775	83.155	G	0.380 km	2012	2,007	21.63%	585	0.0	449,060	3% 3%	462,531	2013	102.71	9.00 m 10.11 m	4.50 m
18C	82.775	83.155	A	0.380 km	2012	2,657	22.57%	600	0.0	424,933	3%	437,681	2013	106.92	10.11 m	5.05 m
18C	83.155	87.525	G	4.370 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	91.09	9.05 m	4.52 m
18C	83.155	87.525	Α	4.370 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	91.09	9.05 m	4.52 m
18C	87.525	89.805	G	2.280 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	89.92	9.00 m	4.50 m
18C 18C	87.525 89.805	89.805 90.315	A G	2.280 km 0.510 km	2012 2012	1,774 1,834	32.14% 29.49%	570 541	0.0 0.0	418,071 422,743	3% 3%	430,613 435,425	2013 2013	89.92 84.12	9.00 m 9.00 m	4.50 m 4.50 m
18C	89.805	90.315	A	0.510 km	2012	1,034	32.14%	570	0.0	422,743	3% 3%	430,613	2013	84.12	9.00 m	4.50 m
			•			,				-,		,		· ··-		

Table F2	Se	ection Properti	es
Project:	Surat Gas Project	Project No:	CB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

	F	ROAD DETA	ILS					TRAFFIC	VOLUMES				ROUGH	NESS	WIE	OTH
TMR	Chainage	Chainage			AADT					Survey Year	HV	Base Year	Roughness	Average	Total	Section
ROAD	Start		Direction	Length	Survey Year	AADT	HV %	HV AADT	ESA/HV	ESAs	Growth	ESAs	Survey Year	Roughness	Pavement Width	Width
18C	90.315	90.335	G	0.020 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	88.00	9.00 m	4.50 m
18C	90.315	90.335	A	0.020 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	88.00	9.00 m	4.50 m
18C	90.335	90.955	G	0.620 km	2012	1,834	29.49%	541 570	0.0	422,743	3%	435,425	2013	83.68	9.00 m	4.50 m
18C 18C	90.335 90.955	90.955 91.665	A G	0.620 km 0.710 km	2012 2012	1,774 1,834	32.14% 29.49%	570 541	0.0 0.0	418,071 422,743	3% 3%	430,613 435,425	2013 2013	83.68 79.66	9.00 m 9.25 m	4.50 m 4.63 m
18C	90.955	91.665	A	0.710 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	79.66	9.25 m	4.63 m
18C	91.665	95.015	G	3.350 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	66.59	10.75 m	5.38 m
18C	91.665	95.015	A	3.350 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	66.59	10.75 m	5.38 m
18C	95.015	96.275	G	1.260 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	66.30	11.10 m	5.55 m
18C	95.015	96.275	Α	1.260 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	66.30	11.10 m	5.55 m
18C	96.275	97.355	G	1.080 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	60.66	10.88 m	5.44 m
18C	96.275	97.355	A	1.080 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	60.66	10.88 m	5.44 m
18C 18C	97.355 97.355	97.425 97.425	G A	0.070 km 0.070 km	2012 2012	1,834 1,774	29.49% 32.14%	541 570	0.0	422,743 418,071	3% 3%	435,425	2013 2013	98.43 98.43	12.00 m 12.00 m	6.00 m 6.00 m
18C	97.335 97.425	97.425	G	0.070 km	2012	1,774	29.49%	570 541	0.0	422,743	3% 3%	430,613 435,425	2013	96.43 115.50	12.00 m	5.00 m
18C	97.425	97.575	Ä	0.150 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	115.50	10.00 m	5.00 m
18C	97.575	98.965	G	1.390 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	66.55	11.31 m	5.66 m
18C	97.575	98.965	Α	1.390 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	66.55	11.31 m	5.66 m
18C	98.965	104.235	G	5.270 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	73.06	10.84 m	5.42 m
18C	98.965	104.235	Α	5.270 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	73.06	10.84 m	5.42 m
18C	104.235	104.435	G	0.200 km	2012	1,834	29.49%	541	0.0	422,743	3%	435,425	2013	61.37	12.80 m	6.40 m
18C	104.235	104.435	A	0.200 km	2012	1,774	32.14%	570	0.0	418,071	3%	430,613	2013	61.37	12.80 m	6.40 m
18C 18C	104.435 104.435	106.355 106.355	G	1.920 km 1.920 km	2012 2012	1,834 1,774	29.49% 32.14%	541 570	0.0 0.0	422,743 418,071	3% 3%	435,425 430,613	2013 2013	67.05 67.05	10.27 m 10.27 m	5.13 m 5.13 m
18C	104.435	108.855	A G	2.500 km	2012	1,774	31.36%	538	0.0	430,372	3% 3%	443,283	2013	95.02	9.00 m	4.50 m
18C	106.355	108.855	A	2.500 km	2012	1,714	30.87%	533	0.0	422,232	3%	434,899	2013	95.02	9.00 m	4.50 m
18C	108.855	109.405	G	0.550 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	99.01	9.00 m	4.50 m
18C	108.855	109.405	Α	0.550 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	99.01	9.00 m	4.50 m
18C	109.405	109.445	G	0.040 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	105.00	9.00 m	4.50 m
18C	109.405	109.445	Α	0.040 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	105.00	9.00 m	4.50 m
18C	109.445	109.815	G	0.370 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	72.55	9.00 m	4.50 m
18C	109.445	109.815	A	0.370 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	72.55	9.00 m	4.50 m
18C 18C	109.815	110.045	G	0.230 km	2012 2012	1,714	31.36%	538	0.0	430,372	3% 3%	443,283	2013	57.85	9.00 m	4.50 m
18C	109.815 110.045	110.045 110.105	A G	0.230 km 0.060 km	2012	1,728 1,714	30.87% 31.36%	533 538	0.0	422,232 430,372	3% 3%	434,899 443,283	2013 2013	57.85 58.08	9.00 m 9.00 m	4.50 m 4.50 m
18C	110.045	110.105	A	0.060 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	58.08	9.00 m	4.50 m
18C	110.105	111.465	G	1.360 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	79.85	9.00 m	4.50 m
18C	110.105	111.465	A	1.360 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	79.85	9.00 m	4.50 m
18C	111.465	112.375	G	0.910 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2012	86.15	9.00 m	4.50 m
18C	111.465	112.375	Α	0.910 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2012	86.15	9.00 m	4.50 m
18C	112.375	112.735	G	0.360 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2012	66.46	9.00 m	4.50 m
18C	112.375	112.735	A G	0.360 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2012	66.46	9.00 m	4.50 m
18C 18C	112.735 112.735	113.585 113.585		0.850 km 0.850 km	2012 2012	1,714 1,728	31.36% 30.87%	538 533	0.0 0.0	430,372 422,232	3% 3%	443,283 434,899	2012 2012	51.64 51.64	9.00 m 9.00 m	4.50 m 4.50 m
18C	112.735	115.565	A G	1.880 km	2012	1,726	31.36%	538	0.0	422,232	3% 3%	434,699	2012	54.83	9.00 m	4.50 m
18C	113.585	115.465	A	1.880 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	54.83	9.00 m	4.50 m
18C	115.465	116.065	G	0.600 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	64.01	9.00 m	4.50 m
18C	115.465	116.065	A	0.600 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	64.01	9.00 m	4.50 m
18C	116.065	118.625	G	2.560 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	48.88	9.00 m	4.50 m
18C	116.065	118.625	Α	2.560 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	48.88	9.00 m	4.50 m
18C	118.625	120.505	G	1.880 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	51.15	9.00 m	4.50 m
18C	118.625	120.505	A	1.880 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	51.15	9.00 m	4.50 m
18C	120.505	121.765	G	1.260 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	56.36	9.00 m	4.50 m
18C 18C	120.505 121.765	121.765 122.285	A G	1.260 km 0.520 km	2012 2012	1,728 1,714	30.87% 31.36%	533 538	0.0 0.0	422,232 430,372	3% 3%	434,899 443,283	2013 2013	56.36 69.04	9.00 m 9.00 m	4.50 m 4.50 m
18C	121.765	122.285	A	0.520 km	2012	1,714	30.87%	533	0.0	430,372	3% 3%	434,899	2013	69.04	9.00 m	4.50 m
18C	122.285	125.535	Ğ	3.250 km	2012	1,720	31.36%	538	0.0	430,372	3%	443,283	2013	61.05	9.00 m	4.50 m
18C	122.285	125.535	A	3.250 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	61.05	9.00 m	4.50 m
18C	125.535	125.795	G	0.260 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	81.79	9.00 m	4.50 m
18C	125.535	125.795	Α	0.260 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	81.79	9.00 m	4.50 m

Table F2	Se	ection Properti	ies
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

	F	ROAD DETA	ILS					TRAFFIC	VOLUMES				ROUGH	INESS	WII	OTH
THE					AADT										Total	
TMR ROAD	Chainage Start	Chainage End	Direction	Length	Survey	AADT	HV %	HV AADT	ESA/HV	Survey Year ESAs	HV Growth	Base Year ESAs	Roughness Survey Year	Average Roughness	Pavement	Section Width
					Year										Width	
18C	125.795	125.895	G	0.100 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	65.30	9.00 m	4.50 m
18C 18C	125.795 125.895	125.895 125.945	A G	0.100 km 0.050 km	2012 2012	1,728 1,714	30.87% 31.36%	533 538	0.0 0.0	422,232 430,372	3% 3%	434,899 443,283	2013 2013	65.30 43.30	9.00 m 9.00 m	4.50 m
18C	125.895	125.945	A	0.050 km	2012	1,714	30.87%	533	0.0	430,372	3% 3%	434,899	2013	43.30	9.00 m	4.50 m 4.50 m
18C	125.695	126.005	G	0.060 km	2012	1,720	31.36%	538	0.0	430,372	3%	443,283	2013	41.08	9.00 m	4.50 m
18C	125.945	126.005	A	0.060 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	41.08	9.00 m	4.50 m
18C	126.005	126.235	G	0.230 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	44.37	9.00 m	4.50 m
18C	126.005	126.235	Α	0.230 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	44.37	9.00 m	4.50 m
18C	126.235	126.475	G	0.240 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	49.21	9.00 m	4.50 m
18C	126.235	126.475	Α	0.240 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	49.21	9.00 m	4.50 m
18C	126.475	126.745	G	0.270 km	2012	1,714	31.36%	538	0.0	430,372	3%	443,283	2013	72.04	11.21 m	5.60 m
18C	126.475	126.745	Α	0.270 km	2012	1,728	30.87%	533	0.0	422,232	3%	434,899	2013	72.04	11.21 m	5.60 m
35A	0.000	0.130	G	0.130 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	124.69	19.77 m	9.88 m
35A	0.000	0.130	A	0.130 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	124.69	19.77 m	9.88 m
35A 35A	0.130 0.130	0.240	G	0.110 km 0.110 km	2012 2012	3,186 3,199	10.40% 11.92%	331 381	0.0	192,757 221,774	3% 3%	198,539 228,427	2013 2013	77.73 77.73	20.00 m 20.00 m	10.00 m 10.00 m
35A	0.130	0.240 0.350	A G	0.110 km	2012	3,186	10.40%	331	0.0	192,757	3% 3%	198,539	2013	83.09	20.00 m	10.00 m
35A	0.240	0.350	A	0.110 km	2012	3,100	11.92%	381	0.0	221,774	3%	228,427	2013	83.09	20.00 m	10.00 m
35A	0.350	0.470	G	0.110 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	92.67	20.00 m	10.00 m
35A	0.350	0.470	A	0.120 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	92.67	20.00 m	10.00 m
35A	0.470	0.740	G	0.270 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	71.11	20.00 m	10.00 m
35A	0.470	0.740	Α	0.270 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	71.11	20.00 m	10.00 m
35A	0.740	0.800	G	0.060 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	113.00	20.00 m	10.00 m
35A	0.740	0.800	Α	0.060 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	113.00	20.00 m	10.00 m
35A	0.800	1.020	G	0.220 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	58.64	20.00 m	10.00 m
35A	0.800	1.020	Α	0.220 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	58.64	20.00 m	10.00 m
35A	1.020	1.220	G	0.200 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	71.10	20.00 m	10.00 m
35A	1.020 1.220	1.220	A G	0.200 km	2012 2012	3,199 3,186	11.92%	381 331	0.0	221,774	3%	228,427	2013 2013	71.10 86.00	20.00 m	10.00 m
35A 35A	1.220	1.270 1.270	A	0.050 km 0.050 km	2012	3,100	10.40% 11.92%	381	0.0 0.0	192,757 221,774	3% 3%	198,539 228,427	2013	86.00	20.00 m 20.00 m	10.00 m 10.00 m
35A	1.270	1.720	Ğ	0.450 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	57.96	21.50 m	10.75 m
35A	1.270	1.720	A	0.450 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	57.96	21.50 m	10.75 m
35A	1.720	1.930	G	0.210 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	75.38	21.14 m	10.57 m
35A	1.720	1.930	A	0.210 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	75.38	21.14 m	10.57 m
35A	1.930	2.500	G	0.570 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	63.63	14.00 m	7.00 m
35A	1.930	2.500	Α	0.570 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	63.63	14.00 m	7.00 m
35A	2.500	2.550	G	0.050 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	82.00	14.00 m	7.00 m
35A	2.500	2.550	Α	0.050 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	82.00	14.00 m	7.00 m
35A	2.550	2.900	G	0.350 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	111.14	9.71 m	4.86 m
35A	2.550	2.900	A	0.350 km	2012	3,199	11.92%	381	0.0	221,774	3%	228,427	2013	111.14	9.71 m	4.86 m
35A	2.900	3.130	G	0.230 km	2012	3,186	10.40%	331	0.0	192,757	3%	198,539	2013	95.09	9.00 m	4.50 m
35A 35A	2.900 3.130	3.130 3.700	A G	0.230 km 0.570 km	2012 2012	3,199 3,186	11.92% 10.40%	381 331	0.0 0.0	221,774 192,757	3% 3%	228,427 198,539	2013 2013	95.09 100.93	9.00 m 10.30 m	4.50 m 5.15 m
35A	3.130	3.700	A	0.570 km	2012	3,100	11.92%	381	0.0	221,774	3%	228,427	2013	100.93	10.30 m	5.15 m
35A	3.700	5.820	Ğ	2.120 km	2012	1,235	26.48%	327	0.0	207,284	3%	213,502	2013	63.42	9.41 m	4.71 m
35A	3.700	5.820	A	2.120 km	2012	1,133	20.63%	234	0.0	156,439	3%	161,132	2013	63.42	9.41 m	4.71 m
35A	5.820	8.590	G	2.770 km	2012	1,235	26.48%	327	0.0	207,284	3%	213,502	2013	85.77	8.76 m	4.38 m
35A	5.820	8.590	Α	2.770 km	2012	1,133	20.63%	234	0.0	156,439	3%	161,132	2013	85.77	8.76 m	4.38 m
35A	8.590	9.190	G	0.600 km	2012	1,235	26.48%	327	0.0	207,284	3%	213,502	2013	105.13	8.97 m	4.49 m
35A	8.590	9.190	Α	0.600 km	2012	1,133	20.63%	234	0.0	156,439	3%	161,132	2013	105.13	8.97 m	4.49 m
35A	9.190	9.430	G	0.240 km	2012	1,235	26.48%	327	0.0	207,284	3%	213,502	2013	94.58	10.47 m	5.24 m
35A	9.190	9.430	A	0.240 km	2012	1,133	20.63%	234	0.0	156,439	3%	161,132	2013	94.58	10.47 m	5.24 m
35A	9.430	11.000	G	1.570 km	2012	1,235	26.48%	327	0.0	207,284	3%	213,502	2013	115.97	7.02 m	3.51 m
35A	9.430	11.000	Α	1.570 km	2012	1,133	20.63%	234	0.0	156,439	3%	161,132	2013	115.97	7.02 m	3.51 m

Table F2	Se	ection Properties	
Project:	Surat Gas Project	Project No: CEB06413	1
Prepared by:	Jessica Peters	Reviewed by: Jeffrey Baczynksi	٦

TMR ROAD	Segment Start Tdist	Segment Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
3251 3251	0	0.12 G 0.12 A	0	0	0	304 78	0	0	152 39	0	0	0	0	184 184	207 207	250 218	207 207	207 207	207 207	67,856 77,175	72,572 81,864	77,246 86,580	81,985 91,291	86,673 96,007	91,412 100,704	96,101 105,393	100,817 110,109	106,057 115,349
3251 3251	0.12 0.12	0.21 G 0.21 A	0	0	0	304 78	0	0	152 39	0	0	0	0	184 184	207	250 218	207	207	207	67,856 77,175	72,572 81,864	77,246 86,580	81,985 91,291	86,673 96,007	91,412 100,704	96,101 105,393	100,817	106,057 115,349
3251 3251	0.21	0.25 G 0.25 A	0	0	0	304 78	0	0	152 39	0 0 0	0	0	0	184 184	207	250 218	207 207	207 207	207	67,856 77,175	72,572 81,864	77,246 86,580	81,985 91,291	86,673 96,007	91,412 100,704 91,412	96,101 105,393 96,101	100,817 110,109	106,057 115,349 106,057
3251 3251 3251	0.25 0.25 0.28	0.28 G 0.28 A 0.63 G	0	0	0	304 78 304	0 0 0	0 0 0	152 39 152	0	0	0	0	184 184 184	207 207 207	250 218 250	207 207 207	207 207 207	207 207 207	67,856 77,175 67,856	72,572 81,864 72,572	77,246 86,580 77,246	81,985 91,291 81,985	86,673 96,007 86,673	91,412 100,704 91,412	105,393 96,101	100,817 110,109 100,817	115,349 106,057
3251 3251	0.28 0.63	0.63 A 2.09 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207 207 207	218 250	207 207 207	207 207 207	207 207 207	77,175 67.856	81,864 72,572	86,580 77,246	91,291 81,985	96,007 86.673	100,704 91,412	105,393 96.101	110,109	115,349 106,057
3251 3251	0.63 2.09	2.09 A 3.21 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207 207	218 250	207 207	207 207	207 207	77,175 67.856	81,864 72,572	86,580 77,246	91,291 81.985	96,007 86.673	100,704 91,412	105,393 96.101	110,109 100,817	115,349 106.057
3251 3251	2.09 3.21	3.21 A 3.94 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207 207	218 250	207 207	207 207	207 207	77,175 67,856	81,864 72,572	86,580 77,246	91,291 81,985	96,007 86,673	100,704 91,412	105,393 96,101	110,109 100,817	115,349 106,057
3251 3251	3.21 3.94	3.94 A 4.43 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207 207	218 250	207 207	207 207	207 207	77,175 67,856	81,864 72,572	86,580 77,246	91,291 81,985	96,007 86,673	100,704 91,412	105,393 96,101	110,109 100,817	115,349 106,057
3251 3251	3.94 4.43	4.43 A 4.79 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207	218 250	207	207	207	77,175 67,856	81,864 72,572	86,580 77,246	91,291 81,985	96,007 86,673	100,704 91,412	105,393 96,101	110,109 100,817	115,349 106,057
3251 3251	4.43 4.79	4.79 A 6.44 G	0	0	0	78 304	0	0	39 152	0	0	0	0	184 184	207	218 250	207	207 207	207	77,175 67,856	81,864 72,572	86,580 77,246	91,291 81,985	96,007 86,673	100,704 91,412	105,393 96,101	110,109 100,817	115,349 106,057
3251 3251 3251	4.79 6.44 6.44	6.44 A 6.69 G 6.69 A	0	0	0	78 304 78	0 0 0	0 0 0	39 152	0	0	0	0	184 184 184	207 207 207	218 250 218	207 207 207	207 207 207	207 207 207	77,175 67,856 77,175	81,864 72,572 81,864	86,580 77,246 86,580	91,291 81,985 91,291	96,007 86,673 96.007	100,704 91,412 100,704	105,393 96,101 105,393	110,109 100,817 110,109	115,349 106,057 115,349
3251 3251 3251	6.69 6.69	7.37 G 7.37 A	0	0	0	304 78	0	0	39 152 39	0	0	0	0	184 184	207 207 207	250 218	207 207 207	207 207 207	207 207 207	67,856 77,175	72,572 81.864	77,246 86.580	81,985 91,291	86,673 96.007	91,412 100,704	96,101 105,393	100,817	106,057 115,349
3251 3251	7.37 7.37	9.34 G 9.34 A	0	0	0	304 78	0	0	152 39	0	0	0	0	184 184	207 207	250 218	207 207	207 207	207 207	67,856 77,175	72,572 81.864	77,246 86.580	81,985 91,291	86,673 96.007	91,412 100,704	96,101 105.393	100,817	106,057 115,349
3251 3251	9.34 9.34	9.63 G 9.63 A	0	0	0	304 78	0	0	152 39	0	0	0	0	184 184	207 207	250 218	207 207	207 207	207 207	67,856 77,175	72,572 81,864	77,246 86,580	81,985 91,291	86,673 96,007	91,412 100,704	96,101 105,393	100,817 110,109	106,057 115,349
3251 3251	9.63 9.63	9.8 G 9.8 A	0	0	0	304 78	0	0	152 39	0	0	0	0	9,182 10,426	9,838 11,082	1,502 1,470	1,459 1,459	1,459 1,459	1,459 1,459	69,121 78,427	73,809 83,143	78,525 87,832	83,237 92,556	87,953 97,245	92,641 101,933	97,353 106,672	102,069 111,361	107,339 116,150
3251 3251	9.8 9.8	9.85 G 9.85 A	0	0	0	304 78	0	0	152 39	0	0	0	0	9,182 10,426	9,838 11,082	1,502 1,470	1,459 1,459	1,459 1,459	1,459 1,459	69,121 78,427	73,809 83,143	78,525 87,832	83,237 92,556	87,953 97,245	92,641 101,933	97,353 106,672	102,069 111,361	107,339 116,150
3251 3251 3251	9.85 9.85 13.58	13.58 G 13.58 A 13.75 G	0	0	0	304 78 304	0 0 0	0 0 0	30,119 25,439 30,119	24,055 24,055 24,055	24,055 24,055 24,055	24,055 24,055 24,055	24,952 24,259 24,952	36,330 35,185 36,330	35,544 35,513 35,544	25,805 25,582 25,805	25,514 25,514 25,514	25,514 25,514 25,514	25,514 25,514 25,514	93,176 102,483 93,176	97,865 107,199 97,865	102,580 111,887 102,580	107,292 116,612 107,292	112,008 121,300 112,008	116,720 126,012 116,720	121,408 130,728 121,408	126,124 135,416 126,124	131,394 140,205 131,394
3251 3251 3251	13.58 13.75	13.75 A 14.92 G	0	0	0	78 304	0	0	25,439 30.119	24,055 24,055 24,055	24,055 24,055 24,055	24,055 24,055 24,055	24,952 24,259 24,952	35,185 36,330	35,544 35,513 35,544	25,582 25,805	25,514 25,514 25,514	25,514 25,514 25,514	25,514 25,514 25,514	102,483 93,176	107,199 97,865	111,887 102,580	116,612 107,292	121,300 121,300 112,008	126,012 116,720	130,728 121,408	135,416 126.124	140,205 131,394
3251 3251	13.75 14.92	14.92 A 16.41 G	0	0	0	78 304	0	0	25,439 30,119	24,055 24,055	24,055 24,055	24,055 24,055	24,259 24,952	35,185 36,330	35,513 35,544	25,582 25,805	25,514 25,514	25,514 25,514	25,514 25,514	102,483 93,176	107,199 97,865	111,887 102,580	116,612 107,292	121,300 112,008	126,012 116,720	130,728 121,408	135,416 126,124	140,205 131,394
3251 3251	14.92 16.41	16.41 A 16.68 G	0	0	0	78 304	0	0	25,439 30,119	24,055 24,055	24,055 24,055	24,055 24,055	24,259 24,952	35,185 36,330	35,513 35,544	25,582 25,805	25,514 25,514	25,514 25,514	25,514 25,514	102,483 93,176	107,199 97,865	111,887 102,580	116,612 107,292	121,300 112,008	126,012 116,720	130,728 121,408	135,416 126,124	140,205 131,394
3251 3251	16.41 16.68	16.68 A 19.9 G	0	0	0	78 304	0	0	25,439 30,119	24,055 24,055	24,055 24,055	24,055 24,055	24,259 24,952	35,185 51,606	35,513 38,623	25,582 26,877	25,514 26,587	25,514 26,587	25,514 26,587	102,483 94,221	107,199 98,937	111,887 103,626	116,612 108,364	121,300 113,053	126,012 117,765	130,728 122,466	135,416 127,155	140,205 131,977
3251 3251	16.68 19.9	19.9 A 21.46 G	0	0	0	78 304	0	0	25,439 30,119	24,055 24,055	24,055 24,055	24,055 24,055	24,259 24,952	52,892 182,415	38,948 50,033	26,654 36,110	26,587 35,820	26,587 35,820	26,587 35,820	103,555	108,244 108,185	112,918 112,896	117,657 117,598	122,345 122,309	127,084 127,025	131,773 131,714	136,489 136,453	139,858 141,808
3251 3251 3251	19.9 21.46 21.46	21.46 A 21.97 G 21.97 A	0	0	0	78 304 78	0 0 0	0 0 0	25,439 30,119 25,439	24,055 24,055 24,055	24,055 24,055 24,055	24,055 24,055 24,055	24,259 24,952 24,259	201,683 182,415 201,683	50,657 50,033 50,657	35,887 36,110 35,887	35,820 35,820 35,820	35,820 35,820 35,820	35,820 35,820 35,820	112,788 103,496 112,788	117,477 108,185 117,477	122,216 112,896 122,216	126,904 117,598 126,904	131,643 122,309 131,643	136,332 127,025 136,332	141,048 131,714 141,048	145,745 136,453 145,745	142,146 141,808 142,146
3251 3251	21.97 21.97	23.14 G 23.14 A	0	0	0	304 78	0	0	30,119 25,439	24,055 24,055	24,055 24,055	24,055 24,055	24,952 24,259	182,415 201.683	50,037 50,033 50,657	36,110 35.887	35,820 35,820	35,820 35,820	35,820 35,820	103,496 112,788	108,185 117,477	112,896 122,216	117,598 126,904	122,309 131,643	127,025 136.332	131,714 141.048	136,453 145,745	141,808 142,146
3251 3251	23.14 23.14	23.59 G 23.59 A	0	0	0	304 78	0	0	30,119 25,439	24,055 24,055	24,055 24,055	24,055 24,055	24,952 24,259	182,415 201,683	50,033 50,657	36,110 35,887	35,820 35,820	35,820 35,820	35,820 35,820	103,496 112,788	108,185 117,477	112,896 122,216	117,598 126,904	122,309 131,643	127,025 136,332	131,714 141,048	136,453 145,745	141,808 142,146
3251 3251	23.59 23.59	25.06 G 25.06 A	0	0	0	304 78	0	0	30,119 25,439	24,055 24,055	24,055 24,055	24,055 24,055	24,952 24,259	182,415 201,683	50,033 50,657	36,110 35,887	35,820 35,820	35,820 35,820	35,820 35,820	103,496 112,788	108,185 117,477	112,896 122,216	117,598 126,904	122,309 131,643	127,025 136,332	131,714 141,048	136,453 145,745	141,808 142,146
3251 3251	25.06 25.06	25.73 G 25.73 A	0	0	0	304 78	0	4,060 20,759	114,807 121,373	93,367 95,518	93,367 95,518	93,367 95,518	132,585 134,044	208,489 232,708	162,064 166,918	108,242 111,208	108,009 110,170	108,009 110,170	108,009 110,170	111,799 123,256	111,799 123,256	111,799 123,256	110,518 120,929	108,118 119,590	108,118 119,590	108,118 119,590	105,634 117,091	110,832 112,289
3251 3251 3251	25.73 25.73 27.9	27.9 G 27.9 A	0	0	0	304 78 304	0	4,060 20,759 4.060	66,887 74,296 70,209	89,907 92,059 90,459	89,907 92,059 90,459	89,907 92,059 90,459	89,907 92,059 93,193	99,818 125,844	91,754 97,611	90,486 93,480 93,337	90,253 92,415 93,105	90,253 92,415 93,105	90,253 92,415 93,105	94,044 105,501 96,895	94,044 105,501 96.895	94,044 105,501 96,895	95,863 106,274	93,860 105,317 96,136	93,860 105,317 96.136	93,860 105,317 96,136	93,860 105,317	105,948 107,378 118.350
3251 3251 3251	27.9 27.9 28.02	28.02 G 28.02 A 29.94 G	0	0	0	78 304	0 0 0	20,759 4.060	70,209 84,459 70,209	92,611 90,459	92,611 90,459	92,611 90,459	100,909	107,956 148,560 107,956	97,907 111,840 97,907	96,331 93,337	95,266 93,105	95,266 93,105	95,266 93,105	108,352 96,895	108,352 96,895	108,352 96,895	103,637 111,197 103,637	107,593 96.136	107,593 96,136	107,593 96.136	100,212 109,316 100,212	113,673 118,350
3251 3251	28.02 29.94	29.94 A 31.19 G	0	0	0	78 304	0	20,759 4,060	84,459 70,209	92,611 90,459	92,611 90,459	92,611 90,459	100,909 93,193	148,560 107,956	111,840 97,907	96,331 93,337	95,266 93,105	95,266 93,105	95,266 93,105	108,352 96,895	108,352 96,895	108,352 96,895	111,197 103,637	107,593 96,136	107,593 96,136	107,593 96,136	109,316 100,212	113,673 118,350
3251 3251	29.94 31.19	31.19 A 37.83 G	0	0	0	78 304	0	20,759 4,060	84,459 70,209	92,611 90,459	92,611 90,459	92,611 90,459	100,909 93,193	148,560 107,956	111,840 97,907	96,331 93,337	95,266 93,105	95,266 93,105	95,266 93,105	108,352 96,895	108,352 96,895	108,352 96,895	111,197 103,637	107,593 96,136	107,593 96,136	107,593 96,136	109,316 100,212	113,673 118,350
3251 3251	31.19 37.83	37.83 A 38.895 G	0	0	0	78 232,672	0 118,777	20,759 111,398	84,459 161,105	92,611 242,222	92,611 244,017	92,611 241,308	100,909 208,391	148,560 210,374	111,840 224,224	96,331 230,755	95,266 233,853	95,266 248,662	95,266 252,632	108,352 270,654	108,352 267,114	108,352 258,134	111,197 257,940	107,593 245,648	107,593 241,325	107,593 236,234	109,316 235,892	113,673 250,805
3251 3251	37.83 38.95	38.895 A 44.21 G	0	0	0	221,732	52,604 118,777	71,696 111,398	124,459 161,105	158,118 242,222	160,802 244,017	164,306 241,308	162,554 208,391	185,330 210,374	184,573 224,224	183,568 230,755	190,493 233,853	202,813 248,662	212,456 252,632	227,520 270,654	227,537 267,114	225,841 258,134	228,159 257,940	220,998 245,648	217,546 241,325	212,294 236,234	209,596 235,892	210,899 250,805
3251 3251 3251	38.95 44.21 44.21	44.21 A 44.3 G 44.3 A	0	0	0 0 0	221,732 15,476 14,266	52,604 86,240 44,248	71,696 98,469 68,381	124,459 137,414 118,375	158,118 175,483 140,979	160,802 203,112 150,292	164,306 193,925 152,137	162,554 201,913 160,899	185,330 210,374 185,330	184,573 224,224 184,573	183,568 224,273 181,913	190,493 233,853 190,493	202,813 248,662 202,813	212,456 252,632 212,456	227,520 270,654 227,520	227,537 267,114 227,537	225,841 258,134 225,841	228,159 257,940 228,159	220,998 245,648 220,998	217,546 241,325 217,546	212,294 236,234 212,294	209,596 235,892 209,596	210,899 250,805 210,899
3251 3251 3251	44.21 44.3 44.3	44.36 G 44.36 A	0	0	0	15,476 14,266	86,240 44,248	98,469 68.381	137,414 118,375	175,483 140,979	203,112 150,292	193,925 152,137	201,913	210,374 185,330	224,224 184,573	224,273 181.913	233,853 190,493	248,662 202,813	252,632 212,456	270,654 227.520	267,114 227.537	258,134 225.841	257,940 228,159	245,648 220.998	241,325 217,546	236,234 212,294	235,892 209,596	250,805 210,899
3251 3251	44.36 44.36	44.52 G 44.52 A	0	333 685	27,521 48,056	126,625 134,084	210,379 183,856	247,803 235,205	261,170 245,831	405,712 383,458	490,437 446,339	464,752 427,172	444,475 405,428	499,199 477,644	608,254 579,298	584,684 544,292	604,130 562,737	629,470 585,589	584,187 544,672	637,762 595,403	572,927 525,814	469,029 427,108	447,245 419,433	436,983 409,620	401,704 378,731	395,693 372,556	409,538 385,210	368,049 328,919
3251 3251	44.52 44.52	44.63 G 44.63 A	0	333 685	27,521 48,056	126,625 134,084	210,379 183,856	247,803 235,205	261,170 245,831	405,712 383,458	490,437 446,339	464,752 427,172	444,475 405,428	499,199 477,644	608,254 579,298	584,684 544,292	604,130 562,737	629,470 585,589	584,187 544,672	637,762 595,403	572,927 525,814	469,029 427,108	447,245 419,433	436,983 409,620	401,704 378,731	395,693 372,556	409,538 385,210	368,049 328,919
3251 3251	44.63 44.63	44.86 G 44.86 A	0	333 685	27,521 48,056	126,625 134,084	210,379 183,856	247,803 235,205	261,170 245,831	405,712 383,458	490,437 446,339	464,752 427,172	444,475 405,428	499,199 477,644	608,254 579,298	584,684 544,292	604,130 562,737	629,470 585,589	584,187 544,672	637,762 595,403	572,927 525,814	469,029 427,108	447,245 419,433	436,983 409,620	401,704 378,731	395,693 372,556	409,538 385,210	368,049 328,919
3251 3251	44.86 44.86	45.09 G 45.09 A	0	333 685	27,521 48,056	126,625 134,084	210,379 183,856	247,803 235,205	261,170 245,831	405,712 383,458	490,437 446,339	464,752 427,172	444,475 405,428	499,199 477,644	608,254 579,298	584,684 544,292	604,130 562,737	629,470 585,589	584,187 544,672	637,762 595,403	572,927 525,814	469,029 427,108	447,245 419,433	436,983 409,620	401,704 378,731	395,693 372,556	409,538 385,210	368,049 328,919

Table F3	Pro	ject ESA Load	lings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16:05/2013 9:02 AM 6413 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS 6 of 21

TMR ROAD	Segment Start Tdist	Segment Direction	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
3251 3251	0	0.12 G 0.12 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48,941	48,150 44,253	43,438 39,514	38,722 34,825	34,033 30,109	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0 0	0	0	0	0
3251 3251	0.12 0.12	0.21 G 0.21 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48,941	48,150 44,253	43,438 39,514	38,722 34,825	34,033 30,109	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251 3251	0.21 0.21	0.25 G 0.25 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48.941	48,150 44,253	43,438 39.514	38,722 34.825	34,033 30,109	29,295 25.398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6.580	5,766 1.869	831 189	0	0	0	0	0
3251	0.25	0.28 G	110,125	114,734	119,423	67,751	57,276	57,577	52,866	48,150	43,438	38,722	34,033	29,295	24,606	19,905	15,193	10,504	5,766	831	0	ō	0	Ö	0
3251 3251	0.25 0.28	0.28 A 0.63 G	119,444 110,125	124,041 114,734	128,757 119,423	69,297 67,751	57,276 57,276	53,680 57,577	48,941 52,866	44,253 48,150	39,514 43,438	34,825 38,722	30,109 34,033	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251 3251	0.28 0.63	0.63 A 2.09 G	119,444 110,125	124,041 114.734	128,757 119,423	69,297 67,751	57,276 57,276	53,680 57,577	48,941 52,866	44,253 48,150	39,514 43,438	34,825 38,722	30,109 34,033	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5.766	189 831	0	0	0	0	0
3251	0.63	2.09 A	119,444	124,041	128,757	69,297	57,276	53,680	48,941	44,253	39,514	34,825	30,109	25,398	20,682	16,008	11,296	6,580	1,869	189	0	0	0	0	0
3251 3251	2.09 2.09	3.21 G 3.21 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48,941	48,150 44,253	43,438 39,514	38,722 34,825	34,033 30,109	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251 3251	3.21 3.21	3.94 G 3.94 A	110,125 119,444	114,734 124,041	119,423 128.757	67,751 69,297	57,276 57,276	57,577 53.680	52,866 48.941	48,150 44,253	43,438 39.514	38,722 34.825	34,033 30,109	29,295 25.398	24,606 20,682	19,905 16.008	15,193 11,296	10,504 6.580	5,766 1.869	831 189	0	0	0	0	0
3251 3251	3.94 3.94	4.43 G 4.43 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48,941	48,150 44,253	43,438 39,514	38,722 34,825	34,033 30,109	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251	4.43	4.79 G	110,125	114,734	119,423	67,751	57,276	57,577	52,866	48,150	43,438	38,722	34,033	29,295	24,606	19,905	15,193	10,504	5,766	831	0	0	0	0	0
3251 3251	4.43 4.79	4.79 A 6.44 G	119,444 110,125	124,041 114.734	128,757 119.423	69,297 67.751	57,276 57,276	53,680 57,577	48,941 52,866	44,253 48,150	39,514 43,438	34,825 38.722	30,109 34.033	25,398 29,295	20,682 24.606	16,008 19.905	11,296 15,193	6,580 10.504	1,869 5.766	189 831	0	0	0	0	0
3251 3251	4.79 6.44	6.44 A 6.69 G	119,444 110,125	124,041 114,734	128,757 119,423	69,297 67,751	57,276 57,276	53,680 57,577	48,941 52,866	44,253 48,150	39,514 43,438	34,825 38,722	30,109 34,033	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251	6.44	6.69 A	119,444	124,041	128,757	69,297	57,276	53,680	48,941	44,253	39,514	34,825	30,109	25,398	20,682	16,008	11,296	6,580	1,869	189	0	0	0	0	0
3251 3251	6.69 6.69	7.37 G 7.37 A	110,125 119,444	114,734 124,041	119,423 128.757	67,751 69,297	57,276 57,276	57,577 53.680	52,866 48.941	48,150 44,253	43,438 39.514	38,722 34.825	34,033 30,109	29,295 25.398	24,606 20,682	19,905 16,008	15,193 11.296	10,504 6.580	5,766 1.869	831 189	0	0	0	0	0
3251 3251	7.37 7.37	9.34 G 9.34 A	110,125 119,444	114,734 124,041	119,423 128,757	67,751 69,297	57,276 57,276	57,577 53,680	52,866 48,941	48,150 44,253	43,438 39,514	38,722 34,825	34,033 30,109	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1.869	831 189	0	0	0	0	0
3251	9.34	9.63 G	110,125	114,734	119,423	67,751	57,276	57,577	52,866	48,150	43,438	38,722	34,033	29,295	24,606	19,905	15,193	10,504	5,766	831	0	0	0	0	0
3251 3251	9.34 9.63	9.63 A 9.8 G	119,444 110,788	124,041 114,734	128,757 119,423	69,297 67,751	57,276 57,276	53,680 57,577	48,941 52,866	44,253 48,150	39,514 43,438	34,825 38,722	30,109 34,033	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251 3251	9.63 9.8	9.8 A 9.85 G	119,584 110,788	124,041 114,734	128,757 119,423	69,297 67,751	57,276 57,276	53,680 57,577	48,941 52.866	44,253 48,150	39,514 43,438	34,825 38,722	30,109 34,033	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251	9.8	9.85 A	119,584	124,041	128,757	69,297	57,276	53,680	48,941	44,253	39,514	34,825	30,109	25,398	20,682	16,008	11,296	6,580	1,869	189	0	0	0	0	0
3251 3251	9.85 9.85	13.58 G 13.58 A	134,843 143,640	138,790 148,096	143,478 152,812	91,806 93,352	81,331 81,331	81,632 77,736	76,921 72,997	72,205 68,308	67,516 63,592	62,777 58,881	58,089 54,165	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251 3251	13.58 13.58	13.75 G 13.75 A	134,843 143,640	138,790 148,096	143,478 152,812	91,806 93,352	81,331 81,331	81,632 77,736	76,921 72,997	72,205 68,308	67,516 63,592	62,777 58,881	58,089 54,165	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1.869	831 189	0	0	0	0	0
3251	13.75	14.92 G	134,843	138,790	143,478	91,806	81,331	81,632	76,921	72,205	67,516	62,777	58,089	29,295	24,606	19,905	15,193	10,504	5,766	831	0	0	0	0	0
3251 3251	13.75 14.92	14.92 A 16.41 G	143,640 134,843	148,096 138,790	152,812 143,478	93,352 91,806	81,331 81,331	77,736 81,632	72,997 76,921	68,308 72,205	63,592 67,516	58,881 62,777	54,165 58,089	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251 3251	14.92 16.41	16.41 A 16.68 G	143,640 134,843	148,096 138,790	152,812 143,478	93,352 91,806	81,331 81,331	77,736 81,632	72,997 76,921	68,308 72,205	63,592 67,516	58,881 62,777	54,165 58,089	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251	16.41	16.68 A	143,640	148,096	152,812	93,352	81,331	77,736	72,997	68,308	63,592	58,881	54,165	25,398	20,682	16,008	11,296	6,580	1,869	189	0	0	0	0	0
3251 3251	16.68 16.68	19.9 G 19.9 A	134,909 143,570	138,790 148,096	143,478 152,812	91,806 93,352	81,331 81,331	81,632 77,736	76,921 72,997	72,205 68,308	67,516 63,592	62,777 58,881	58,089 54,165	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251 3251	19.9 19.9	21.46 G 21.46 A	135,063 143,595	138,790 148,096	143,478 152,812	91,806 93,352	81,331 81,331	81,632 77,736	76,921 72,997	72,205 68,308	67,516 63,592	62,777 58,881	58,089 54,165	29,295 25,398	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1.869	831 189	0	0	0	0	0
3251 3251	21.46 21.46	21.97 G 21.97 A	135,063 143,595	138,790 148,096	143,478 152,812	91,806 93,352	81,331 81,331	81,632 77,736	76,921 72,997	72,205 68,308	67,516 63,592	62,777 58,881	58,089 54,165	29,295 25,398	24,606 20.682	19,905 16.008	15,193 11,296	10,504 6.580	5,766 1.869	831 189	0	0	0	0	0
3251	21.97	23.14 G	135,063	138,790	143,478	91,806	81,331	81,632	76,921	72,205	67,516	62,777	58,089	29,295	24,606	19,905	15,193	10,504	5,766	831	0	0	0	0	0
3251 3251	21.97 23.14	23.14 A 23.59 G	143,595 135,063	148,096 138,790	152,812 143,478	93,352 91,806	81,331 81,331	77,736 81,632	72,997 76,921	68,308 72,205	63,592 67,516	58,881 62,777	54,165 58,089	25,398 29,295	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	189 831	0	0	0	0	0
3251 3251	23.14 23.59	23.59 A 25.06 G	143,595 135,063	148,096 138,790	152,812 143,478	93,352 91.806	81,331 81.331	77,736 81,632	72,997 76.921	68,308 72,205	63,592 67,516	58,881 62,777	54,165 58.089	25,398 29,295	20,682 24.606	16,008 19.905	11,296 15,193	6,580 10.504	1,869 5,766	189 831	0	0	0	0	0
3251	23.59	25.06 A	143,595	148,096	152,812	93,352	81,331	77,736	72,997	68,308	63,592	58,881	54,165	25,398	20,682	16,008	11,296	6,580	1,869	189	0	0	0	0	0
3251 3251	25.06 25.06	25.73 G 25.73 A	96,356 106,245	93,492 104,949	93,492 104,949	90,312 94,019	89,701 91,863	94,167 92,432	94,167 92,432	94,167 92,432	94,167 92,432	94,167 92,432	142,631 127,300	71,333 41,108	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	0	0	0	0	0
3251 3251	25.73 25.73	27.9 G 27.9 A	95,910 105,799	93,492 104,949	93,492 104,949	90,312 94,019	89,701 91.863	94,167 92,432	94,167 92,432	94,167 92,432	94,167 92.432	94,167 92,432	142,631 127,300	71,333 41,108	24,606 20,682	19,905 16.008	15,193 11,296	10,504 6.580	5,766 1.869	831 189	0	0	0	0	0
3251 3251	27.9	28.02 G	102,398	93,492	93,492	90,312	89,701	94,167	94,167	94,167	94,167	94,167	142,631	71,333	24,606	19,905	15,193	10,504	5,766	831 189	0	Ö	Ö	Ö	0
3251	27.9 28.02	28.02 A 29.94 G	108,912 102,398	104,949 93,492	104,949 93,492	94,019 90,312	91,863 89,701	92,432 94,167	92,432 94,167	92,432 94,167	92,432 94,167	92,432 94,167	127,300 142,631	41,108 71,333	20,682 24,606	16,008 19,905	11,296 15,193	6,580 10,504	1,869 5,766	831	0	0	0	0	0
3251 3251	28.02 29.94	29.94 A 31.19 G	108,912 102,398	104,949 93.492	104,949 93.492	94,019 90.312	91,863 89,701	92,432 94.167	92,432 94.167	92,432 94.167	92,432 94.167	92,432 94,167	127,300 142.631	41,108 71.333	20,682 24.606	16,008 19.905	11,296 15,193	6,580 10.504	1,869 5,766	189 831	0	0	0	0	0
3251	29.94	31.19 A	108,912	104,949	104,949	94,019	91,863	92,432	92,432	92,432	92,432	92,432	127,300	41,108	20,682	16,008	11,296	6,580	1,869	189	0	Ö	Ö	Ö	0
3251 3251	31.19 31.19	37.83 G 37.83 A	102,398 108,912	93,492 104,949	93,492 104,949	90,312 94,019	89,701 91,863	94,167 92,432	94,167 92,432	94,167 92,432	94,167 92,432	94,167 92,432	142,631 127,300	71,333 41,108	24,606 20,682	19,905 16,008	15,193 11,296	10,504 6,580	5,766 1,869	831 189	Ō	0	0	0	0
3251 3251	37.83 37.83	38.895 G 38.895 A	222,107 193,197	207,836 183.883	196,701 174,355	180,218 157,244	166,429 144,206	162,476 136,356	160,334 134,214	158,093 131,973	156,176 130.028	155,370 129,250	203,751 164.033	132,989 78.380	85,939 57,658	81,039 52.757	76,072 47,791	71,047 42,766	67,261 38.953	62,002 36.976	151,948 138.666	0	0	0	0
3251	38.95	44.21 G	222,107	207,836	196,701	180,218	166,429	162,476	160,334	158,093	156,176	155,370	203,751	132,989	85,939	81,039	76,072	71,047	67,261	62,002	151,948	0	0	0	0
3251 3251	38.95 44.21	44.21 A 44.3 G	193,197 222,107	183,883 207,836	174,355 196,701	157,244 180,218	144,206 166,429	136,356 162,476	134,214 160,334	131,973 158,093	130,028 156,176	129,250 155,370	164,033 203,751	78,380 132,989	57,658 85,939	52,757 81,039	47,791 76,072	42,766 71,047	38,953 67,261	36,976 62,002	138,666 150,875	0	0	0	0
3251 3251	44.21 44.3	44.3 A 44.36 G	193,197 222,107	183,883 207,836	174,355 196,701	157,244 180,218	144,206 166,429	136,356 162,476	134,214 160,334	131,973 158,093	130,028 156,176	129,250 155,370	164,033 203,751	78,380 132,989	57,658 85,939	52,757 81,039	47,791 76,072	42,766 71,047	38,953 67,261	36,976 62,002	137,592 150,875	0	0	0	0
3251 3251	44.3 44.36	44.36 A 44.52 G	193,197 348,530	183,883 321,534	174,355 310,399	157,244 293,919	144,206 280,104	136,356 276,174	134,214	131,973	130,028	129,250 244,486	164,033 292,867	78,380 222.109	57,658 175,059	52,757 170,159	47,791 165,192	42,766 160,144	38,953 156,381	36,976 151,122	137,592	0 42,038	0	0	0
3251	44.36	44.52 A	314,958	299,549	290,021	272,910	259,848	252,022	249,857	247,616	267,424	220,334	255,116	169,464	148,742	143,841	138,875	133,827	130,037	128,061	228,676	15,711	0	0	0
3251 3251	44.52 44.52	44.63 G 44.63 A	348,530 314,958	321,534 299,549	310,399 290,021	293,919 272,910	280,104 259,848	276,174 252,022	274,009 249,857	271,768 247,616	291,604 267,424	244,486 220,334	292,867 255,116	222,109 169,464	175,059 148,742	170,159 143,841	165,192 138,875	160,144 133,827	156,381 130,037	151,122 128,061	239,991 228,676	42,038 15,711	0	0	0
3251 3251	44.63 44.63	44.86 G 44.86 A	348,530 314,958	321,534 299,549	310,399 290.021	293,919 272,910	280,104 259,848	276,174 252.022	274,009 249,857	271,768 247,616	291,604 267,424	244,486 220,334	292,867 255,116	222,109 169,464	175,059 148,742	170,159 143,841	165,192 138,875	160,144 133.827	156,381 130,037	151,122 128,061	239,991	42,038 15,711	0	0	0
3251	44.86	45.09 G	348,530	321,534	310,399	293,919	280,104	276,174	274,009	271,768	291,604	244,486	292,867	222,109	175,059	170,159	165,192	160,144	156,381	151,122	239,991	42,038	ō	0	0
3251	44.86	45.09 A	314,958	299,549	290,021	272,910	259,848	252,022	249,857	247,616	267,424	220,334	255,116	169,464	148,742	143,841	138,875	133,827	130,037	128,061	228,676	15,711	0	0	0

Table F3	Pro	ject ESA Load	ings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16/05/2013 9:02 AM 6413 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS 7 of 21

TMR ROAD	Segment Start Tdist	Segment Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
3251 3251	45.09 45.09	45.32 G 45.32 A	0	333 685	27,521 48,056	126,625 134,084	210,379 183,856	247,803 235,205	261,170 245,831	405,712 383,458	490,437 446,339	464,752 427,172	444,475 405,428	499,199 477,644	608,254 579,298	584,684 544,292	604,130 562,737	629,470 585,589	584,187 544,672	637,762 595,403	572,927 525,814	469,029 427,108	447,245 419,433	436,983 409,620	401,704 378,731	395,693 372,556	409,538 385,210	368,049 328,919
3251 3251	45.32 45.32	45.61 G 45.61 A	0	103 455	26,809 47,343	61,181 68,640	86,459 59,936	122,595 109,998	68,219 52,880	157,044 134,790	241,332 197,234	212,267 174,687	192,979 153,932	247,680 226,124	357,378 328,422	335,856 295,463	357,922 316,529	385,125 341,244	341,383 301,868	398,476 356,117	332,193 285,079	229,444 187,523	203,360 175,548	186,476 159,113	176,215 153,242	161,719 138,582	159,214 134,886	171,166 132,036
18C 18C	80.175 80.175	80.365 G 80.365 A	0	0	10,075 1,283	56,558 28,776	86,812 81,495	80,178 82,465	152,060 169,643	156,176 169,645	164,306 170,795	171,460 171,807	191,154 209,720	185,258 181,474	167,671 173,840	172,710 174,591	164,553 175,591	169,454 181,782	172,422 183,282	228,398 242,729	236,652 253,045	242,770 258,844	254,665 266,316	253,463 272,885	247,580 260,251	254,267 266,742	273,297 280,569	263,629 274,966
18C 18C 18C	80.365 80.365 80.485	80.485 G 80.485 A 80.615 G	0	0	10,075 1,283	56,558 28,776 56,558	86,812 81,495 86,812	80,178 82,465 80,178	152,060 169,643 152,060	156,176 169,645 156,176	164,306 170,795 164,306	171,460 171,807 171,460	191,154 209,720 191,154	185,258 181,474 185,258	167,671 173,840 167,671	172,710 174,591 172,710	164,553 175,591 164,553	169,454 181,782 169,454	172,422 183,282	228,398 242,729 228,398	236,652 253,045 236,652	242,770 258,844 242,770	254,665 266,316 254,665	253,463 272,885 253,463	247,580 260,251 247,580	254,267 266,742 254,267	273,297 280,569	263,629 274,966 263,629
18C 18C	80.485 80.615	80.615 G 80.615 A 80.645 G	0 0 0	0	10,075 1,283 10,075	28,776 56,558	81,495 86.812	82,465 80,178	169,643 152,060	169,645 156,176	170,795 164,306	171,460 171,807 171,460	209,720 192,051	185,258 181,474 186,615	173,840 170,615	172,710 174,591 176,114	175,591 168,485	181,782 173,456	172,422 183,282 176,975	242,729 233.273	253,045 241,619	258,844 247,829	266,316 260.345	272,885 259,120	260,251 253,260	254,267 266,742 259,923	273,297 280,569 281,690	274,966 269,768
18C 18C	80.615 80.645	80.645 A 80.705 G	0	0	1,283	28,776 56,558	81,495 86,812	82,465 80,178	169,643 152,060	169,645 156,176	170,795 164,306	171,460 171,807 171,460	210,616 192,051	182,831 186,615	176,783 170,615	176,114 177,994 176,114	179,523 168,485	185,783 173,456	187,835 176,975	247,604 233,273	258,012 241,619	263,903 247,829	271,996 260,345	278,542 259,120	265,931 253,260	272,399 259,923	288,962 281,690	281,105 269,768
18C 18C	80.645 80.705	80.705 G 80.705 A 80.875 G	0	0	10,075 1,283 10,075	28,776 56.558	81,495 86.812	80,178 82,465 80.178	169,643 152,060	169,645 156,176	170,795 164,306	171,460 171,807 171,460	210,616 192,051	182,831 186,615	170,615 176,783 170,615	176,114 177,994 176,114	179,523 168,485	185,783 173,456	187,835 176,975	247,604 233,273	258,012 241,619	263,903 247,829	271,996 260.345	259,120 278,542 259,120	265,931 253,260	259,923 272,399 259,923	281,690 288,962 281,690	281,105 269.768
18C 18C	80.705 80.875	80.875 A 81.045 G	0	0	1,283 10.075	28,776 56,558	81,495 86,812	82,465 79,948	169,643 84,960	169,645 64.518	170,795 72.648	171,807 179,802	210,616 96,714	182,831 90,473	176,783 72,886	176,114 177,994 77.925	179,523 69.630	185,783 74,094	187,835 76,578	247,604 133.106	258,012 141,797	263,903 147,709	271,996 154,131	278,542 162,472	265,931 157,623	272,399 165.368	288,962 177,155	281,105 178,547
18C 18C	80.875 81.045	81.045 G 81.045 A 81.255 G	0	0	1,283	28,776 56,558	81,495 86,812	82,235 79.948	102,543 84,960	77,987 64.518	72,646 79,137 72,648	80,148 79.802	115,279 96,714	86,689 90,473	79,054 72,886	79,805 77,925	80,667 69.630	86,422 74.094	87,439 76.578	147,438	158,190 141,797	163,783 147,709	165,782 154,131	181,894 162,472	170,295 157,623	177,844 165.368	184,427 177,155	176,547 189,884 178,547
18C 18C	81.045 81.255	81.255 A 81.505 G	0	0	1,283 10.075	28,776 56.558	81,495 86.812	82,235 79.948	102,543 84,960	77,987 64.518	72,646 79,137 72.648	80,148 79.802	115,279 98.928	86,689 92,156	79,054 78,517	79,805 80.159	80,667 72,278	86,422 74.382	87,439 79.352	147,438 134.737	158,190 142,289	163,783 148.201	165,782 157,192	181,894 162,472	170,295 157,623	177,844 165.368	184,427 177,155	189,884 179,881
18C 18C	81.255 81.505	81.505 A 81.755 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	82,235 79.948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79.802	123,900 98.928	92,750 92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74.382	97,077 79,352	153,083 134,737	159,926 142,289	165,518 148,201	176,255 157,192	181,894 162,472	170,295 157,623	177,844 165.368	184,427 177,155	190,054 179,881
18C 18C	81.505 81.755	81.755 A 82.425 G	0	0	1,283 10.075	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79.802	123,900 98,928	92,750 92,750 92,156	99,445 78.517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	153,083 134,737	159,926 142,289	165,518 148,201	176,255 157,192	181,894 162,472	170,295 157,623	177,844 165,368	184,427 177,155	190,054 179,881
18C 18C	81.755 82.425	82.425 G 82.425 A 82.775 G	0	0	1,283 10,075	28,776 56.558	81,495 86.812	82,235 79.948	102,543 84,960	77,987 64.518	72,646 79,137 72.648	80,148 79.802	123,900 98.928	92,750 92,756	99,445 78.517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	153,083 134,737	159,926 142,289	165,518 148.201	176,255 157,192	181,894 162,472	170,295 157,623	177,844 165.368	184,427 177,155	190,054 179.881
18C 18C	82.425 82.775	82.775 A 83.155 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64,518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	153,083 134,737	159,926 142,289	165,518 148,201	176,255 157,192	181,894 162,472	170,295 157,623	177,844 165,368	184,427 177,155	190,054 179,881
18C 18C	82.775 83.155	83.155 A 87.525 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79,802	123,900 98.928	92,750 92,750 92,156	99,445 78.517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	153,083 117,246	159,926 123,312	165,518 127,907	176,255 135,425	181,894 137,064	170,295 132,648	177,844 138,933	184,427 149.387	190,054 150,650
18C 18C	83.155 87.525	87.525 A 89.805 G	0	0	1,283 10.075	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80.159	89,821 72,278	87,284 74.382	97,077 79,352	136,238 117,246	141,622 123,312	146,130 127,907	155,436 135,425	157,474 137.064	145,935 132,648	152,025 138,933	157,579	161,770 150,650
18C	87.525 89.805	89.805 A 90.315 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	82,235 79,948	102,543 84,960	77,987 64,518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	136,238 117,246	141,622 123,312	146,130 127,907	155,436 135,425	157,474 137,064	145,935 132,648	152,025 138,933	157,579	161,770 150,650
18C 18C	89.805 90.315	90.315 A 90.335 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64,518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	136,238 117,246	141,622 123,312	146,130 127,907	155,436 135,425	157,474 137,064	145,935 132,648	152,025 138,933	157,579	161,770 150,650
18C 18C	90.315 90.335	90.335 A 90.955 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64,518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	136,238 96,469	141,622 100,720	146,130 103,464	155,436 109,177	157,474 108,974	145,935 102,801	152,025 107,241	157,579 115,865	161,770 115,317
18C 18C	90.335 90.955	90.955 A 91.665 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79.802	123,900 98,928	92,750 92,156	99,445 78.517	87,640 80.159	89,821 72,278	87,284 74.382	97,077 79,352	118,971 74,418	122,513 74.658	125,176 75.381	132,699 79.127	132,868	119,538 71.084	123,814 71,514	127,539 78.120	129,888 75.578
18C 18C	90.955 91.665	91.665 A 95.015 G	0	0	1,283	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78.517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	97,285 74,418	96,846 74,658	97,542 75,381	103,043 79,127	103,387 79,112	88,240 71,084	88,508 71,514	90,216 78,120	90,598 75,578
18C 18C	91.665 95.015	95.015 A 96.275 G	0	0	1,283	28,776 56,558	81,495 86,812	82,235 79,948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79,802	123,900 98,928	92,750 92,156	99,445 78,517	87,640 80,159	89,821 72,278	87,284 74,382	97,077 79,352	97,285 74,418	96,846 74,658	97,542 75,381	103,043 79,127	103,387 79,112	88,240 71,084	88,508 71,514	90,216 78,120	90,598 75.578
18C 18C	95.015 96.275	96.275 A 97.355 G	0	0	1,283	28,776 56,558	81,495 86.812	82,235 79.948	102,543 84,960	77,987 64.518	79,137 72,648	80,148 79.802	123,900 98.928	92,750 92,156	99,445 78.517	87,640 80.159	89,821 72,278	87,284 74.382	97,077 79,352	97,285 74.418	96,846 74,658	97,542 75,381	103,043 79,127	103,387 79.112	88,240 71.084	88,508 71,514	90,216 78.120	90,598 75.578
18C 18C	96.275 97.355	97.355 A 97.425 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	82,235 78.844	102,543 84,714	77,987 64.518	79,137 72,297	80,148 79.763	123,900 98,928	92,750 92,104	99,445 78,517	87,640 79.964	89,821 72,278	87,284 74.187	97,077 79,248	97,285 74.507	96,846 74,376	97,542 74,504	103,043 77,726	103,387 77,124	88,240 68.466	88,508 68,523	90,216 74,544	90,598 71.473
18C	97.355 97.425	97.425 A 97.575 G	0	0	1,283	28,776 56,558	81,495 86,812	81,983 78,844	102,487 84,714	77,987 64.518	79,057 72,297	80,140 79,763	123,900 98,928	92,738 92,104	99,445 78,517	87,596 79,964	89,821 72,278	87,239 74,187	97,054 79,248	102,242 74,507	101,703 74,376	101,660 74,504	106,648 77,726	106,237 77,124	90,498 68,466	90,693 68,523	91,678 74,544	91,531 71,473
18C 18C	97.425 97.575	97.575 A 98.965 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	81,983 78,844	102,487 84,714	77,987 64.518	79,057 72,297	80,140 79.763	123,900 98,928	92,738 92,104	99,445 78,517	87,596 79,964	89,821 72,278	87,239 74,187	97,054 79,248	102,242 74.507	101,703 74.376	101,660 74,504	106,648 77,726	106,237 77,124	90,498 68.466	90,693 68.523	91,678 74,544	91,531 71.473
18C 18C	97.575 98.965	98.965 A 104.235 G	0	0	1,283 10,075	28,776 56,558	81,495 86.812	81,983 78,844	102,487 84,714	77,987 64,518	79,057 72,297	80,140 79,763	123,900 98,928	92,738 92,104	99,445 78,517	87,596 79,964	89,821 72,278	87,239 74,187	97,054 79,248	102,242 74,507	101,703 74,376	101,660 74,504	106,648 77,726	106,237 77,124	90,498 68.466	90,693 68,523	91,678 74,544	91,531 71,473
18C 18C	98.965 104.235	104.235 A 104.435 G	0	0	1,283 10.075	28,776 56,558	81,495 86.812	81,983 78,844	102,487 84.714	77,987 64.518	79,057 72,297	80,140 79.763	123,900 98,928	92,738 92,104	99,445 78,517	87,596 79,964	89,821 72,278	87,239 74,187	97,054 79,248	102,242 74,507	101,703 74,376	101,660 74,504	106,648 77,726	106,237 77,124	90,498 68.466	90,693 68.523	91,678 74,544	91,531 71,473
18C 18C	104.235 104.435	104.435 A 106.355 G	0	0	1,283 10.075	28,776 56,558	81,495 86,812	81,983 78,701	102,487 84.714	77,987 64.518	79,057 72,050	80,140 79.607	123,900 98,928	92,738 91.559	99,445 78.517	87,596 79,717	89,821 72,278	87,239 73,486	97,054 78,260	102,242 100.026	101,703 101,566	101,660 103,426	106,648 106,143	106,237 107,138	90,498 102,290	90,693 104.008	91,678 111,773	91,531 108.253
18C 18C	104.435 106.355	106.355 A 108.855 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	106.355 108.855	108.855 A 109.405 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	108.855 109.405	109.405 A 109.445 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84.714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108.253
18C 18C	109.405 109.445	109.445 A 109.815 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	109.445 109.815	109.815 A 110.045 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	109.815 110.045	110.045 A 110.105 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	110.045 110.105	110.105 A 111.465 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	110.105 111.465	111.465 A 112.375 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	111.465 112.375	112.375 A 112.735 G	0	0	1,283 10,075	28,776 56,558	81,495 86,812	81,951 78,701	102,487 84,714	77,987 64,518	79,001 72,050	80,104 79,607	123,900 98,928	92,614 91,559	99,445 78,517	87,539 79,717	89,821 72,278	87,080 73,486	96,829 78,260	132,622 100,026	133,606 101,566	135,309 103,426	139,655 106,143	140,806 107,138	129,184 102,290	130,902 104,008	133,655 111,773	132,840 108,253
18C 18C	112.375 112.735	112.735 A 113.585 G	0	0	1,283 10,075	28,776 56,558	81,495 86,604	81,951 78,592	102,487 84,328	77,987 64,587	79,001 71,768	80,104 79,526	123,900 99,204	92,614 92,223	99,445 79,069	87,539 80,755	89,821 72,968	87,080 75,419	96,829 81,102	132,622 101,566	133,606 103,107	135,309 105,632	139,655 107,615	140,806 108,609	129,184 104,864	130,902 106,034	133,655 113,014	132,840 111,979
18C 18C	112.735 113.585	113.585 A 115.465 G	0	0	1,283 10,075	28,776 56,558	81,448 86,604	82,541 78,592	102,453 84,328	78,056 64,587	79,999 71,768	80,865 79,526	124,176 99,204	95,207 92,223	99,997 79,069	89,242 80,755	90,511 72,968	90,891 75,419	102,314 81,102	134,162 101,566	135,147 103,107	137,139 105,632	141,127 107,615	142,278 108,609	131,117 104,864	132,521 106,034	134,897 113,014	135,141 111,979
18C 18C	113.585 115.465	115.465 A 116.065 G	0	0	1,283 10,075	28,776 56,558	81,448 86,604	82,541 78,592	102,453 84,328	78,056 64,587	79,999 71,768	80,865 79,526	124,176 99,204	95,207 92,223	99,997 79,069	89,242 80,755	90,511 72,968	90,891 75,419	102,314 81,102	134,162 101,566	135,147 103,107	137,139 105,632	141,127 107,615	142,278 108,609	131,117 104,864	132,521 106,034	134,897 113,014	135,141 111,979
18C	115.465	116.065 A	0	0	1,283	28,776	81,448	82,541	102,453	78,056	79,999	80,865	124,176	95,207	99,997	89,242	90,511	90,891	102,314	134,162	135,147	137,139	141,127	142,278	131,117	132,521	134,897	135,141

Table F3	Pro	ject ESA Load	ings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16/05/2013 9:02 AM 6413 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS

TMR ROAD	Segment Start Tdist	Segment Direction	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
3251 3251	45.09 45.09	45.32 G 45.32 A	348,530 314,958	321,534 299,549	310,399 290,021	293,919 272,910	280,104 259,848	276,174 252.022	274,009 249,857	271,768 247.616	291,604 267,424	244,486 220,334	292,867 255,116	222,109 169,464	175,059 148,742	170,159 143,841	165,192 138,875	160,144 133,827	156,381 130,037	151,122 128.061	239,991 228,676	42,038 15,711	0	0	0
3251	45.32	45.61 G	153,693	130,216	118,782	99,359	81,749	76,255	68,434	62,789	60,274	58,572	73,564	113,090	77,790	72,913	67,924	62,898	59,135	53,853	40,027	30,265	Ō	Ö	0
3251 18C	45.32 80.175	45.61 A 80.365 G	120,121 265,423	108,230 268,031	98,404 258,615	78,349 197,725	61,493 183,883	52,103 178,220	44,282 174,690	38,637 169,320	36,095 162,022	34,420 162,043	35,813 182,222	60,445 50,895	51,473 37,700	46,596 36,171	41,606 34,575	36,581 33,116	32,791 31,741	30,792 30,784	28,712 26,552	3,937 0	0	0	0
18C 18C	80.175 80.365	80.365 A 80.485 G	277,913 265,423	280,507 268,031	272,232 258,615	216,378 197,725	203,466 183,883	199,517 178,220	194,823 174,690	189,311 169,320	183,059 162,022	180,374 162,043	204,304 182,222	72,977 50,895	59,782 37,700	58,253 36.171	56,657 34,575	55,198 33,116	53,822 31,741	52,866 30,784	24,305 26,552	0	0	0	0
18C	80.365	80.485 A	277,913	280,507	272,232	216,378	203,466	199,517	194,823	189,311	183,059	180,374	204,304	72,977	59,782	58,253	56,657	55,198	53,822	52,866	24,305	0	0	Ö	0
18C 18C	80.485 80.485	80.615 G 80.615 A	265,423 277,913	268,031 280,507	258,615 272,232	197,725 216,378	183,883 203,466	178,220 199,517	174,690 194,823	169,320 189,311	162,022 183,059	162,043 180,374	182,222 204,304	50,895 72,977	37,700 59,782	36,171 58,253	34,575 56,657	33,116 55,198	31,741 53,822	30,784 52,866	26,552 24,305	0	0	0	0
18C 18C	80.615 80.615	80.645 G 80.645 A	274,483 286,973	272,125 284,600	262,478 276,095	199,611 218,264	187,217 206,801	180,335 201,633	175,794 195,927	170,332 190,323	164,460 185,496	162,043 180,374	182,222 204,304	50,895 72,977	37,700 59,782	36,171 58,253	34,575 56,657	33,116 55,198	31,741 53,822	30,784 52,866	26,552 24,305	0	0	0	0
18C	80.645	80.705 G	274,483	272,125	262,478	199,611	187,217	180,335	175,794	170,332	164,460	162,043	182,222	50,895	37,700	36,171	34,575	33,116	31,741	30,784	26,552	Ö	0	0	0
18C 18C	80.645 80.705	80.705 A 80.875 G	286,973 274,483	284,600 272,125	276,095 262,478	218,264 199,611	206,801 187,217	201,633 180,335	195,927 175,794	190,323 170,332	185,496 164,460	180,374 162,043	204,304 182,222	72,977 50,895	59,782 37,700	58,253 36,171	56,657 34,575	55,198 33,116	53,822 31,741	52,866 30,784	24,305 26,552	0	0	0	0
18C 18C	80.705 80.875	80.875 A 81.045 G	286,973 182,802	284,600 186,468	276,095 177,511	218,264 115,955	206,801 102,504	201,633 100,405	195,927 95,955	190,323 90,309	185,496 83,288	180,374 80,618	204,304 70,604	72,977 48,596	59,782 46,117	58,253 43,460	56,657 40,899	55,198 38,382	53,822 35,259	52,866 31,589	24,305 26,552	0	0	0	0
18C	80.875	81.045 A	195,292	198,944	191,128	134,608	122,087	121,702	116,089	110,300	104,324	98,949	92,686	70,678	68,198	65,542	62,981	60,464	57,341	53,670	24,305	Ö	0	0	Ö
18C 18C	81.045 81.045	81.255 G 81.255 A	182,802 195,292	186,468 198,944	177,511 191.128	115,955 134.608	102,504 122.087	100,405 121,702	95,955 116.089	90,309 110.300	83,288 104.324	80,618 98,949	70,604 92,686	48,596 70.678	46,117 68.198	43,460 65.542	40,899 62.981	38,382 60,464	35,259 57,341	31,589 53.670	26,552 24,305	0	0	0	0
18C	81.255	81.505 G	186,832	189,164	180,643	116,255	105,771	102,338	96,554	90,909	86,882	80,618	70,604	48,596	46,117	43,460	40,899	38,382	35,259	31,589	26,552	0	0	0	0
18C 18C	81.255 81.505	81.505 A 81.755 G	195,805 186,832	199,287 189,164	191,527 180,643	134,646 116,255	122,507 105,771	121,948 102,338	116,165 96,554	110,377 90,909	104,778 86,882	98,949 80,618	92,686 70,604	70,678 48,596	68,198 46,117	65,542 43,460	62,981 40,899	60,464 38,382	57,341 35,259	53,670 31,589	24,305 26,552	0	0	0	0
18C 18C	81.505 81.755	81.755 A 82.425 G	195,805 186.832	199,287 189,164	191,527 180.643	134,646 116.255	122,507 105.771	121,948 102.338	116,165 96.554	110,377 90,909	104,778 86.882	98,949 80.618	92,686 70.604	70,678 48.596	68,198 46.117	65,542 43,460	62,981 40.899	60,464 38.382	57,341 35,259	53,670 31,589	24,305 26.552	0	0	0	0
18C	81.755	82.425 A	195,805	199,287	191,527	134,646	122,507	121,948	116,165	110,377	104,778	98,949	92,686	70,678	68,198	65,542	62,981	60,464	57,341	53,670	24,305	Ö	0	0	Ö
18C 18C	82.425 82.425	82.775 G 82.775 A	186,832 195.805	189,164 199,287	180,643 191,527	116,255 134.646	105,771 122,507	102,338 121.948	96,554 116.165	90,909 110.377	86,882 104.778	80,618 98,949	70,604 92,686	48,596 70.678	46,117 68.198	43,460 65.542	40,899 62.981	38,382 60,464	35,259 57,341	31,589 53.670	26,552 24,305	0	0	0	0
18C	82.775	83.155 G	186,832	189,164	180,643	116,255	105,771	102,338	96,554	90,909	86,882	80,618	70,604	48,596	46,117	43,460	40,899	38,382	35,259	31,589	26,552	0	0	0	0
18C 18C	82.775 83.155	83.155 A 87.525 G	195,805 153,946	199,287 158,799	191,527 153,427	134,646 94,750	122,507 88,289	121,948 85,555	116,165 81,207	110,377 77,142	104,778 74,579	98,949 69,844	92,686 61,263	70,678 47,940	68,198 45,480	65,542 42,713	62,981 39,965	60,464 37,508	57,341 34,707	53,670 31,382	24,305 26,552	0	0	0	0
18C 18C	83.155 87.525	87.525 A 89.805 G	163,893 153,946	169,208 158,799	164,475 153.427	113,211 94,750	105,025 88.289	105,023 85,555	100,675 81,207	96,376 77,142	92,213 74.579	87,887 69.844	83,199 61,263	69,876 47.940	67,300 45.480	64,533 42,713	61,786 39.965	59,590 37.508	56,789 34,707	53,463 31,382	24,305 26.552	0	0	0	0
18C	87.525	89.805 A	163,893	169,208	164,475	113,211	105,025	105,023	100,675	96,376	92,213	87,887	83,199	69,876	67,300	64,533	61,786	59,590	56,789	53,463	24,305	Ö	0	Ö	Ö
18C 18C	89.805 89.805	90.315 G 90.315 A	153,946 163,893	158,799 169,208	153,427 164,475	94,750 113,211	88,289 105,025	85,555 105,023	81,207 100,675	77,142 96,376	74,579 92,213	69,844 87,887	61,263 83,199	47,940 69.876	45,480 67,300	42,713 64.533	39,965 61,786	37,508 59,590	34,707 56,789	31,382 53,463	26,552 24.305	0	0	0	0
18C	90.315	90.335 G	153,946	158,799	153,427	94,750	88,289	85,555	81,207	77,142	74,579	69,844	61,263	47,940	45,480	42,713	39,965	37,508	34,707	31,382	26,552	0	0	0	0
18C 18C	90.315 90.335	90.335 A 90.955 G	163,893 116,769	169,208 119,829	164,475 116,762	113,211 69,101	105,025 66,422	105,023 65,811	100,675 63,282	96,376 61,059	92,213 60,333	87,887 57,394	83,199 50,650	69,876 55,182	67,300 51,381	64,533 47,328	61,786 43,287	59,590 39,494	56,789 35,506	53,463 31,506	24,305 26,552	0	0	0	0
18C 18C	90.335 90.955	90.955 A 91.665 G	130,170 77,245	133,703 76,277	130,636 75,598	88,283 41,753	83,157 43.133	83,996 43,128	81,467 42.507	78,982 42,278	76,688 43,546	74,130 42,558	71,306 37.629	75,838 52,699	71,921 49.196	67,842 45.419	63,800 41,723	60,269 38,114	56,542 34,540	53,327 31,322	24,305 26.552	0	0	0	0
18C	90.955	91.665 A	91,027	90,597	89,824	61,016	59,869	61,313	60,692	60,201	59,901	59,294	58,285	73,355	69,737	65,933	62,237	58,889	55,576	53,143	24,305	0	0	0	0
18C 18C	91.665 91.665	95.015 G 95.015 A	77,245 91,027	76,277 90.597	75,598 89.824	41,753 61,016	43,133 59.869	43,128 61,313	42,507 60.692	42,278 60.201	43,546 59,901	42,558 59.294	37,629 58,285	52,699 73.355	49,196 69.737	45,419 65.933	41,723 62,237	38,114 58,889	34,540 55.576	31,322 53.143	26,552 24,305	0	0	0	0
18C	95.015	96.275 G	77,245	76,277	75,598 89.824	41,753	43,133	43,128	42,507 60,692	42,278	43,546	42,558	37,629	52,699	49,196	45,419	41,723	38,114	34,540	31,322	26,552	0	0	0	0
18C 18C	95.015 96.275	96.275 A 97.355 G	91,027 77,245	90,597 76,277	75,598	61,016 41,753	59,869 43,133	61,313 43,128	42,507	60,201 42,278	59,901 43,546	59,294 42,558	58,285 37,629	73,355 52,699	69,737 49,196	65,933 45,419	62,237 41,723	58,889 38,114	55,576 34,540	53,143 31,322	24,305 26,552	0	0	0	0
18C 18C	96.275 97.355	97.355 A 97.425 G	91,027 72,553	90,597 71,104	89,824 69.842	61,016 35,461	59,869 36.672	61,313 37.570	60,692 37,706	60,201 37.842	59,901 39.640	59,294 39,204	58,285 34.711	73,355 59.237	69,737 54.401	65,933 49.420	62,237 44.632	58,889 39.937	55,576 35,197	53,143 31,539	24,305 26.552	0	0	0	0
18C	97.355	97.425 A	91,206	90,617	88,169	55,765	53,407	53,521	53,539	53,556	53,785	53,729	53,157	77,541	72,704	67,724	62,936	58,356	54,403	52,837	24,305	Ö	0	Ö	Ö
18C 18C	97.425 97.425	97.575 G 97.575 A	72,553 91,206	71,104 90,617	69,842 88,169	35,461 55,765	36,672 53,407	37,570 53,521	37,706 53,539	37,842 53,556	39,640 53,785	39,204 53,729	34,711 53,157	59,237 77,541	54,401 72,704	49,420 67,724	44,632 62,936	39,937 58,356	35,197 54,403	31,539 52,837	26,552 24,305	0	0	0	0
18C 18C	97.575 97.575	98.965 G 98.965 A	72,553 91,206	71,104 90.617	69,842 88.169	35,461 55.765	36,672 53,407	37,570 53,521	37,706 53,539	37,842 53,556	39,640 53,785	39,204 53,729	34,711 53.157	59,237 77,541	54,401 72,704	49,420 67,724	44,632 62.936	39,937 58,356	35,197 54.403	31,539 52,837	26,552 24.305	0	0	0	0
18C	98.965	104.235 G	72,553	71,104	69,842	35,461	36,672	37,570	37,706	37,842	39,640	39,204	34,711	59,237	54,401	49,420	44,632	39,937	35,197	31,539	26,552	0	0	0	0
18C 18C	98.965 104.235	104.235 A 104.435 G	91,206 72,553	90,617 71,104	88,169 69.842	55,765 35,461	53,407 36.672	53,521 37,570	53,539 37,706	53,556 37,842	53,785 39.640	53,729 39,204	53,157 34.711	77,541 59.237	72,704 54.401	67,724 49.420	62,936 44.632	58,356 39,937	54,403 35.197	52,837 31,539	24,305 26.552	0	0	0	0
18C	104.235	104.435 A	91,206	90,617	88,169	55,765	53,407	53,521	53,539	53,556	53,785	53,729	53,157	77,541	72,704	67,724	62,936	58,356	54,403	52,837	24,305	0	Ō	Ō	0
18C 18C	104.435 104.435	106.355 G 106.355 A	110,872 134,081	113,233 137,607	109,077 131,414	59,896 81,051	56,741 73,477	59,380 72,480	57,662 70,762	56,107 69,064	56,298 67,711	54,274 66,067	48,243 63,814	70,865 86,436	64,310 79,881	57,723 73,294	51,414 66,985	45,137 60,708	38,361 55,212	32,170 52,945	26,552 24,305	0	0	0	0
18C 18C	106.355 106.355	108.855 G 108.855 A	110,872 134.081	113,233 137.607	109,077 131,414	59,896 81.051	56,741 73,477	59,380 72,480	57,662 70,762	56,107 69.064	56,298 67,711	54,274 66.067	48,243 63.814	70,865 86.436	64,310 79.881	57,723 73,294	51,414 66.985	45,137 60,708	38,361 55,212	32,170 52.945	26,552 24.305	0	0	0	0
18C	108.855	109.405 G	110,872	113,233	109,077	59,896	56,741	59,380	57,662	56,107	56,298	54,274	48,243	70,865	64,310	57,723	51,414	45,137	38,361	32,170	26,552	0	0	0	0
18C 18C	108.855 109.405	109.405 A 109.445 G	134,081 110,872	137,607 113,233	131,414 109,077	81,051 59.896	73,477 56,741	72,480 59,380	70,762 57.662	69,064 56,107	67,711 56.298	66,067 54,274	63,814 48.243	86,436 70,865	79,881 64,310	73,294 57.723	66,985 51,414	60,708 45,137	55,212 38,361	52,945 32,170	24,305 26.552	0	0	0	0
18C	109.405	109.445 A	134,081	137,607	131,414	81,051	73,477	72,480	70,762	69,064	67,711	66,067	63,814	86,436	79,881	73,294	66,985	60,708	55,212	52,945	24,305	0	Ō	Ō	0
18C 18C	109.445 109.445	109.815 G 109.815 A	110,872 134,081	113,233 137,607	109,077 131,414	59,896 81,051	56,741 73,477	59,380 72,480	57,662 70,762	56,107 69,064	56,298 67,711	54,274 66,067	48,243 63,814	70,865 86,436	64,310 79,881	57,723 73,294	51,414 66,985	45,137 60,708	38,361 55,212	32,170 52,945	26,552 24,305	0	0	0	0
18C 18C	109.815 109.815	110.045 G 110.045 A	110,872 134,081	113,233 137,607	109,077 131,414	59,896 81,051	56,741 73,477	59,380 72,480	57,662 70,762	56,107 69,064	56,298 67,711	54,274 66,067	48,243 63,814	70,865 86,436	64,310 79,881	57,723 73,294	51,414 66,985	45,137 60,708	38,361 55,212	32,170 52,945	26,552 24,305	0	0	0	0
18C	110.045	110.105 G	110,872	113,233	109,077	59,896	56,741	59,380	57,662	56,107	56,298	54,274	48,243	70,865	64,310	57,723	51,414	45,137	38,361	32,170	26,552	Ö	0	0	Ö
18C 18C	110.045 110.105	110.105 A 111.465 G	134,081 110,872	137,607 113,233	131,414 109,077	81,051 59,896	73,477 56,741	72,480 59,380	70,762 57,662	69,064 56,107	67,711 56,298	66,067 54,274	63,814 48,243	86,436 70,865	79,881 64,310	73,294 57,723	66,985 51,414	60,708 45,137	55,212 38,361	52,945 32,170	24,305 26,552	0	0	0	0
18C	110.105	111.465 A	134,081	137,607	131,414	81,051	73,477	72,480	70,762	69,064	67,711	66,067	63,814	86,436	79,881	73,294	66,985	60,708	55,212	52,945	24,305	0	0	0	0
18C 18C	111.465 111.465	112.375 G 112.375 A	110,872 134,081	113,233 137,607	109,077 131,414	59,896 81,051	56,741 73,477	59,380 72,480	57,662 70,762	56,107 69,064	56,298 67,711	54,274 66,067	48,243 63,814	70,865 86,436	64,310 79,881	57,723 73,294	51,414 66,985	45,137 60,708	38,361 55,212	32,170 52,945	26,552 24,305	0	0	0	0
18C 18C	112.375 112.375	112.735 G 112.735 A	110,872 134.081	113,233 137.607	109,077 131,414	59,896 81.051	56,741 73,477	59,380 72.480	57,662 70,762	56,107 69.064	56,298 67,711	54,274 66.067	48,243 63.814	70,865 86.436	64,310 79.881	57,723 73,294	51,414 66.985	45,137 60,708	38,361 55,212	32,170 52.945	26,552 24.305	0	0	0	0
18C	112.735	113.585 G	111,861	115,348	109,951	63,902	61,733	59,380	57,662	56,107	56,298	54,274	48,243	70,865	64,310	57,723	51,414	45,137	38,361	32,170	26,552	0	0	0	0
18C 18C	112.735 113.585	113.585 A 115.465 G	135,069 111,861	139,080 115,348	132,288 109,951	83,227 63,902	75,878 61,733	72,480 59,380	70,762 57,662	69,064 56,107	67,711 56,298	66,067 54,274	63,814 48,243	86,436 70,865	79,881 64,310	73,294 57,723	66,985 51,414	60,708 45,137	55,212 38,361	52,945 32,170	24,305 26,552	0	0	0	0
18C 18C	113.585 115.465	115.465 A 116.065 G	135,069 111,861	139,080 115,348	132,288 109.951	83,227 63,902	75,878 61,733	72,480 59.380	70,762 57.662	69,064 56,107	67,711 56,298	66,067 54,274	63,814 48,243	86,436 70,865	79,881 64,310	73,294 57,723	66,985 51,414	60,708 45,137	55,212 38,361	52,945 32,170	24,305 26,552	0	0	0	0
18C	115.465	116.065 A	135,069	139,080	132,288	83,227	75,878	72,480	70,762	69,064	67,711	66,067	63,814	86,436	79,881	73,294	66,985	60,708	55,212	52,945	24,305	0	0	0	0

Table F3	Pro	ject ESA Load	ings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16/05/2013 9:02 AM 6413 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS 9 of 21

The content	TMR ROAD	Segment Start Tdist	Segment Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Healest 1922-200 1932-200				-	0																								
No.					-																								
100 100 100 100 100 100 100 100 100 100					0																								
14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	18C	120.505	121.765 G		0	10,075	56,558	86,604	78,592	84,328	64,587	71,768	79,526	99,536	92,453	79,642	82,882	75,056	78,812	84,289	104,602	106,142	108,690	110,650	111,645	107,923	109,093	118,124	114,784
				-	•																								
15 15 15 15 15 15 15 15				-	•																								
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		122.285	125.535 G	ō	ō	10,075	56,558	86,604	78,592	84,328	64,587	71,768	79,526	99,536	92,453	79,642	82,882	75,056	78,812	84,289	104,602	106,142	108,690	110,650	111,645	107,923	109,093	118,124	114,784
15 15 15 15 15 15 15 15				-	-																								
1					-																								
Fig. 125-84 126-000 126-00 12				-																									
				-	-																								
1800 1802 1803 1804 1805					0																								
Fig. 18-225 124-15 G					-																								
Fig. 1922-25 126-76 A 0 0 1.283 29-76 8.6970 192-25 192					-																								
180 126 175		126.235	126.475 A	•	•	1,283	29,219				79,320		85,166	129,497	100,147	104,251	101,029	97,540	102,925	109,333	139,730				146,382	136,745	137,383	139,370	
Section Sect				-	•																								
55A 0				-	•																								
55A		-		-	-																								
55A					-																								
35A 0.24 0.35 A 0 0 0 0.00 0 690 8,640 12,333 14,171 24,205 20,302 25,524 15,620 15,257 13,709 15,704 13,807 15,224 15,005 23,842 34,007 17,01 15,006 19,681 18,683 13,009 15,418 18,000 10,000				-	-																								
36A 0.35 0.47 Å 0 0 0 9,000 699 8,549 12,533 14,171 24,000 50,802 15,004 15,004 13,607 15,004				-	•																								
38A 0.47 0.74 G 0 0 10.334 1.448 23.703 22.46 38.84 07.42 50.801 65.031 20.675 28.377 20.312 18.06 52.8283 36.03 17.70 16.906 19.683 16.853 16.189 33A 0.74 0.74 G 0.8 G 0 0 10.334 1.448 23.703 32.346 38.64 07.42 50.801 65.031 20.675 28.337 20.334 24.22 17.72 20.132 18.05 32.883 36.03 17.70 16.906 19.683 16.853 16.189 33A 0.8 1 10.2 G 0 0 10.334 1.448 23.703 32.346 38.64 07.42 50.801 65.031 20.675 28.337 20.334 24.22 17.72 20.132 18.05 32.843 34.03 17.70 16.906 19.683 16.853 15.039 9.549 18.000 19.000					-																								
38A 0 47 0 74 A 0 0 0 9,999 659 8,549 12,533 14,171 24,005 20,802 25,244 15,000 15,004				-	-																								
93A 074 0.8 G 0 0 10,334 1.448 23,703 2.346 38,864 67,482 50,801 65,031 28,675 28,337 20,934 24,239 18,942 23,772 20,132 18,505 32,883 36,403 13,710 18,906 18,883 18,685 15,039 9,549 18,548 36,40 10,25 G 0 0 10,334 1.448 23,703 23,46 38,694 67,482 50,801 65,601 12,675 13,799 15,704 18,607 18,942 23,772 20,132 18,505 32,883 36,403 13,710 18,906 18,883 18,485 15,039 9,549 18,485 12,485 18,485					-																								
38A 0.8 1.02 A 0 0 10.334 1.448 23.703 32.346 38.84 74.72 25.080 25.524 15.620 15.257 13.799 15.704 15.004 15.945 33.462 38.779 27.580 49.949 18.945 34.945 34.945 3	35A	0.74	0.8 G		0	10,334	1,448	23,703	32,346	38,864	67,482	50,801	65,031	29,675	26,337	20,934	24,329	16,942	23,772	20,132	18,505	32,983	36,403	13,710	16,906	19,683	16,853	15,039	9,549
38A 0.8 1.02 A 0 0 9.09 659 8.549 12.533 14.171 24.205 20.802 25.24 15.620 15.257 13.799 15.704 13.607 15.924 25.92 20.132 15.505 32.983 34.62 35.779 27.806 49.524 46.431 45.954 35.649 13.706 32.549 35.649 12.539 14.171 24.205 20.802 25.524 15.627 13.799 15.704 13.607 15.924 25.92 20.132 15.505 32.983 36.40 31.3710 16.906 15.685 16.039 15.418 35.649 12.539 14.171 24.205 20.802 25.524 15.627 15.279 13.799 15.704 13.607 15.924 25.92 25.92 15.525 15.279 13.799 15.704 13.607 15.924 25.92 25.92 15.525 15.279 13.799 15.704 13.607 15.924 25.92 25.92 15.				-																									
38A 1.02 1.22 A 0 0 1,0334 1,448 23,703 32,46 38,894 67,482 50,801 65,031 29,675 28,337 20,934 24,329 16,942 23,772 20,132 18,505 32,883 36,770 17,00 16,906 19,683 16,883 16,818 37,618 38,84 122 127 A 0 0 10,334 1,448 23,703 32,446 38,864 67,482 50,801 65,031 29,675 28,337 20,934 24,329 16,942 23,772 20,132 18,505 32,883 36,403 13,710 16,906 19,683 16,883 15,418 38,84 122 127 A 0 0 10,334 1,448 23,703 32,446 38,864 67,482 50,801 65,031 29,675 28,337 20,934 24,329 16,942 23,772 20,132 18,505 32,883 36,403 13,710 16,906 19,683 16,883 15,418 36,448 12,				-	•																								
1.22 1.27 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 65.031 29.675 26.337 20.934 24.329 16.942 23.772 20.132 18.505 32.983 38.603 13.710 16.906 19.683 18.685 15.099 9.549 35.48 12.77 17.2 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 65.031 29.675 26.337 20.934 24.329 16.942 23.772 20.132 18.505 32.983 38.603 13.710 16.906 19.683 16.853 15.099 9.549 35.48 12.77 17.2 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 65.031 29.675 26.337 20.934 24.329 16.942 23.772 20.132 18.505 32.983 36.03 13.710 16.906 19.683 16.853 15.099 9.549 35.48 12.772 19.3 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 65.031 29.675 26.337 20.934 24.329 18.505 32.983 36.03 13.710 16.906 19.683 16.853 15.099 9.549 35.48 12.72 19.3 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 65.031 29.675 26.337 20.934 24.329 18.505 32.983 36.03 13.710 16.906 19.683 16.853 15.039 9.549 35.44 12.72 19.3 G 0 0 10.334 1.448 23.703 32.346 38.884 67.482 60.801 67.				ō	ō	10,334	1,448		32,346					29,675		20,934		16,942	23,772			32,983	36,403	13,710		19,683	16,853		
35A 1.27 1.27 A 0 0 9,00 659 8,549 12,533 14,171 24,005 25,604 15,000 15,004 15,004 15,004 15,004 15,004 22,0132 18,605 32,983 38,403 13,710 16,906 16,803 15,711 16,906 16,803 15,711 16,906 16,906 16,906 16,906 16,906 16,906 16,906 18,603 15,711 18,600 16,906 16,906 16,903 18,618 16,803 18,618 36,833 13,710 16,906 16,906 16,903 18,618 18,683 18,				-	-																								
35A 1.27 1.72 G 0 0 10,334 1.48 23,703 32,346 38,884 07.482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 8,640 13,710 16,906 19,683 16,853 15,039 9,549 18,533 17.2 1.93 G 0 0 10,334 1.488 23,703 32,346 38,884 67.482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,683 16,853 15,039 9,549 18,533 17.2 1.93 G 0 0 10,334 1.488 23,703 32,346 38,884 67.482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,683 16,853 15,039 9,549 18,353 18,417 12,42,05 18,418 18,417 12,42,05 18,418 18,417 12,42,05 18,418 1					-																								
35A 1.72 193 G 0 0 10.334 1.448 23,703 32.246 38,864 67.482 50.801 29.675 26,337 20.934 24.329 16.904 15.904 15.904 35.97 27.780 48.534 48.431 45.954 35.84 19.3 2.5 G 0 0 10.334 1.448 23.703 32.246 38.84 67.482 50.801 65.001 29.675 26.337 20.934 24.329 16.942 23.772 20.132 18.605 33.482 36.79 27.5804 48.524 48.514 48.518 48.518 48.524																													
35A 1.72 1.93 A 0 0 9,990 659 8,549 12,533 14,171 24,205 20,802 25,524 15,820 15,257 13,799 15,704 13,807 15,924 15,904 15,954 33,482 36,779 27,800 49,524 46,431 48,954 37,833 15,418 35A 1.93 2.5 G 0 0 10,334 1.448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,883 16,818 15,418 35A 2.5 2.5 G 0 0 0 10,334 1.448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,883 16,818 15,418 35A 2.5 2.9 G 0 0 0 10,334 1.448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,883 16,818 15,418 35A 2.5 2.9 G 0 0 0 10,334 1.448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 16,942 23,772 20,132 18,505 32,983 36,403 13,710 16,906 19,883 15,418 35A 2.5 2.9 A 0 0 0 9,900 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15,954 33,462 36,779 27,800 49,524 46,431 45,954 37,883 15,418 35A 2.5 2.9 A 0 0 0 9,900 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15,954 33,462 36,779 27,800 49,524 46,431 45,954 37,883 15,418 36,418 3																													
35A 1.93 2.5 G 0 0 1 0.334 1.448 23,703 32.346 83.884 67.482 50.801 65.031 2.8675 26.337 20.934 24.329 16.942 23,772 20.132 18.505 32.983 36.403 13,710 16.906 19.83 16.883 15.349 35.40 3				-	•																								
55A 2.5 2.5 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 18.942 23.772 20.132 18.505 32.983 36.403 13.710 16.906 19.683 15.039 9.549 15.83 14.171 24.205 20.802 25.524 15.620 15.257 13.799 15.704 13.607 15.924 15.904 15.904 15.905 32.983 36.403 37.710 16.906 19.683 16.853 15.039 9.549 15.805 32.983 36.403 13.710 16.906 19.683 16.853 15.039 9.549 15.805 15.031 15.03				-	-																								
35A 2.5 2.5 S A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,004 15,704 18,924 16,904 15,934 33,462 36,779 27,580 49,524 46,831 45,963 15,031 35A 2.55 2.9 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,004 15,004 15,924 15,904				-	•																								
56A 2.55 2.9 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 18.942 23.772 20.132 18.505 32.983 36.403 13.710 18.906 19.683 16.853 15.039 9.549 18.548 2.9 3.13 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 18.505 32.983 36.403 13.710 18.906 19.683 16.853 15.039 9.549 18.549				-	-																								-,
56A 2.55 2.9 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15,904 15,904 33,462 36,779 27,580 49,524 46,431 45,904 37,683 15,418 35A 2.9 3.13 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15					0																								
35A 2.9 3.13 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15,954 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 35,418 37,70	35A	2.55	2.9 A			9,090	659	8,549	12,533	14,171	24,205	20,802	25,524	15,620	15,257	13,799	15,704	13,607	15,924	15,904	15,954	33,462	36,779	27,580	49,524	46,431	45,954	37,683	
35A 3.13 3.7 G 0 0 10.334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 15,704 13,607 15,924 15,904 15,955 32,983 36,403 13,710 16,906 19,683 16,853 15,039 9,549 18,545				-	•																								
35A 3.13 3.7 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,807 15,924 15,904 15,954 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 35A 3.7 5.82 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,807 15,924 15,904 15,954 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 35A 5.82 8.59 G 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 18,945 23,772 20,132 18,505 32,983 36,403 13,710 18,604 15,954 46,31 45,954 37,683 15,418 35A 5.82 8.59 G 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 18,942 23,772 20,132 18,505 32,983 36,403 13,710 18,054 15,954 46,31 45,954 37,683 15,418 35A 5.82 8.59 9,19 G 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 31,486 39,531 22,499 35,430 47,862 76,484 21,102 24,298 27,051 24,221 22,407 16,940 35A 9,43 11 G 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,527 13,799 15,704 13,607 15,924 15,904				-	-																								
35A 3.7 5.82 A 0 0 9,090 659 8,59 12,533 14,171 24,205 20,802 25,524 15,620 15,267 13,799 15,704 15,904 15,904 15,994 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 35A 5.82 8.59 B 0 0 9,090 659 8,59 B 12,533 14,171 24,205 20,802 25,524 15,620 15,267 13,799 15,704 13,607 15,924 15,904 15,954 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 35A 5.82 8.59 A 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 31,486 39,531 24,491 35,404 47,862 76,484 21,102 24,229 27,7683 49,494 58,898 4				-	•																								
56A 5.82 8.59 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 16.942 23.772 20.132 18.505 32.983 36.403 13.710 16.906 19.683 16.839 15.418 35A 8.59 9.19 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 31.486 39.531 22.499 35.430 47.862 76.484 21.102 24.298 27.051 24.221 22.407 16.940 15.954																													
35A 5.82 8.59 A 0 0 9,980 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 13,607 15,924 15,904 15,954 33,462 36,779 27,580 49,524 46,431 45,954 37,683 15,418 1					-																								
56A 8.59 9.19 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 31.486 39.531 22.499 35.430 47.862 76.484 21.102 24.298 27.651 24.221 22.407 16.940 35A 8.59 9.19 A 0 0 9.090 659 8.549 12.533 14.171 24.205 20.802 25.524 15.620 15.257 13.799 15.704 31.289 34.795 18.285 36.017 50.781 84.518 34.944 55.888 53.800 53.32 24.052 22.782 23.054 24.058 24.0				-	-																								
35A 9.19 9.43 G 0 0 10.334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 31,486 39,531 22,499 35,430 47,862 76,484 21,102 24,298 27,051 24,221 22,407 16,940 35A 9.19 9.43 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 31,289 34,795 18,285 36,017 50,781 84,518 34,944 56,888 53,800 53,322 22,782 35A 943 11 G 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 31,486 39,531 22,499 35,430 47,862 76,484 21,102 24,298 27,051 24,221 22,407 16,940	35A	8.59	9.19 G		-	10,334	1,448	23,703	32,346	38,864	67,482	50,801	65,031	29,675	26,337	20,934	24,329	31,486	39,531	22,499	35,430	47,862	76,484	21,102	24,298	27,051	24,221	22,407	16,940
35A 9.19 9.43 A 0 0 9.090 659 8.549 12.533 14.171 24.205 20.802 25.524 15.620 15.257 13.799 15.704 31.289 34.795 18.285 36.017 50.781 84.518 34.944 56.888 53.800 53.322 45.052 22.782 35A 9.43 11 G 0 0 10.334 1.448 23.703 32.346 38.864 67.482 50.801 65.031 29.675 26.337 20.934 24.329 31.486 39.531 22.499 35.430 47.862 76.484 21.102 24.298 27.051 24.221 22.407 16.940				-	-																								
35A 9.43 11 G 0 0 10,334 1,448 23,703 32,346 38,864 67,482 50,801 65,031 29,675 26,337 20,934 24,329 31,486 39,531 22,499 35,430 47,862 76,484 21,102 24,298 27,051 24,221 22,407 16,940				-	0																			, .					
35A 9.43 11 A 0 0 9,090 659 8,549 12,533 14,171 24,205 20,802 25,524 15,620 15,257 13,799 15,704 31,289 34,795 18,285 36,017 50,781 84,518 34,944 56,888 53,800 53,322 45,052 22,782					0																								
	35A	9.43	11 A	0	0	9,090	659	8,549	12,533	14,171	24,205	20,802	25,524	15,620	15,257	13,799	15,704	31,289	34,795	18,285	36,017	50,781	84,518	34,944	56,888	53,800	53,322	45,052	22,782

Table F3	Pro	ject ESA Load	ings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16/05/2013 9:02 AM 6413 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS

14 14 15 16 16 16 16 16 16 16	TMR ROAD	Segment Start Tdist	Segment Direction	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
																								-		
																							-	-	-	-
18000 121900 12	18C	118.625	120.505 A	138,648	145,762	135,240	87,882	76,971	72,480	70,762	69,064	67,711	66,067	63,814	86,436	79,881	73,294	66,985	60,708	55,212	52,945	24,305	ō	Ö	-	Ō
12 12 12 12 12 13 14 14 12 12 13 14 13 13 14 13 13 13																							0	0	-	0
																							-	-	-	0
18 12 12 12 13 13 13 14 15 15 15 15 15 15 15																							-	0	-	0
12 12 12 13 13 13 14 15 15 15 15 15 15 15																							-		•	•
No. 183786 125866 116.468 12738 14.4797 33.58 4.6796 33.58 4.6796 35.58 5.6766 5.6966																							•	0	•	•
180 128-786 128-86 138-69 148-79 148																								0		0
150 128-186 129-186 129-186 129-186 118-187 129-187																								0	-	0
Section 1985 1986	18C	125.895	125.945 G	116,486	127,639	114,879	73,358	64,015	59,381	57,663	56,108	56,299	54,275	48,244	70,866	64,311	57,724	51,415	45,138	38,362	32,171	39,580	ō	Ö	Ō	Ō
																							•	•	•	0
Fig. 126.006 126.256 116.256																							•	•	•	•
Fig. 1922.53 1934.76 G 114.846 127.630 114.77 73.380 64.105 63.381 73.67 73.87	18C	126.005	126.235 G	116,486	127,639	114,879	73,358	64,015	59,381	57,663	56,108	56,299	54,275	48,244	70,866	64,311	57,724	51,415	45,138	38,362	32,171	39,580	0	0	0	0
16C 122-23 128-478 128-549 138-549 138-578 138-589 139-578 138-589 138-578 138-589 138-578																							•	0		0
150 126																							-	0	0	0
35A 0 0.13 G 5,772 7,521 3.019 4,828 2,215 3,809 3,808 0																								0	0	0
35A 0 0 0 13 A 7582 12.83 4.783 7.503 4.900 3.880 7.085 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																								0	0	0
38A 0.13 0.24 A 7.982 12.283 4.783 7.503 4.000 3.880 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-										-	-	-	-	•	-	-	-	-	-	-	-	0	0	0
38A 0.24 0.35 G 6.772 7.321 3.819 4.228 3.213 2.515 3.809 3.828 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	-	-	-	0	-	-	-	-	-	-	0	0	-	0
38A 0.24 0.35 A 7.982 12.263 4.783 7.503 4.900 3.880 7.085 7.894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														-	-	0		0	-				0	0	-	0
38A 0.35 0.47 0.7 6 5.75 3.80 7.68 4.90 3.880 7.68 7.984 0		0.24	0.35 A	7,982	12,263	4,783	7,503	4,900	3,680	7,065	7,984	0	0	ō	Ō	ō	0	Ō	ō	ō	ō	Ō	ō	Ō	ō	Ō
35A 0.47 0.74 d 7.72 l 7.32 l 3.69 l 4.628 l 3.213 l 2.515 l 3.99 l 3.828 l 0												-	0	0	•	0	0	0	0	•	-	-	0	0	0	0
35A 0.74 0.8 G 5.772 7.321 3.619 4.628 3.215 2.809 3.826 0													0	0	-	0	0	0	0	0	-		0	0	0	0
38A 0.74 0.8 A 7.982 12.263 4.783 7.503 4.900 3.880 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	•	0	-	0	-	0	-	-	-	-	0	0	-	0
35A 0.8 10.2 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													-	•	-	0	-	0	-	-	-		0	0	-	0
35A 1.02 1.22 A 7.921 2.68 J 3.213 2.515 3.809 3.826 0													-	-	-	0	-	0	-	-	-	-	0	0	-	0
35A 1,02 1,22 A 7,982 1,2283 4,783 7,503 4,900 3,800 7,085 7,984 0 <td></td> <td>-</td> <td>•</td> <td>0</td> <td>•</td> <td>0</td> <td>•</td> <td>0</td> <td>0</td> <td>•</td> <td>•</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>												-	•	0	•	0	•	0	0	•	•	-	0	0	0	0
35A 122 127 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	-	0	-	0	0	-	-		0	0	0	0
35A 1.27 1.72 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	Ö	ő	-	ő	-	0	Ö	-	-		Ö	Ö	Ö	Ö
35A 1.77 1.72 A 7.982 12.83 4.783 7.503 4.900 3.880 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													0	0	-	0	-	0	0	-			0	0	-	0
35A 1.72 1.93 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	-	0	-	0	0	-	-		0	0	-	0
35A 193 2.5 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0			1.93 G	5,772	7,321	3,619	4,628		2,515	3,809		•	•	•	•	0	•	0	•	•	•	-			•	0
35A 193 2.5 A 7.982 12.283 4.783 7.503 4.900 3.880 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	•	0	-	0	-	•	-	-	0	0		0
35A 2.5 2.5 G 5,772 7,321 3,619 4,628 3,213 2,515 3,809 3,826 0												-	0	0	-	0	-	0	-	•	-	-	0	0		0
35A 2.55 2.9 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2.55 G	5,772	7,321	3,619	4,628		2,515			-	0	0	-	0	0	0	0	-	-	-	0	0	0	0
35A 2.55 2.9 A 7.982 12.283 4.783 7.503 4.900 3.680 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													0	0		0	0	0	0	-	-		0	0	0	0
35A 2.9 3.13 A 7.982 12.283 4.783 7.503 4.900 3.680 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													•	•		Ö	•	•	•	•	•			0	•	•
35A 3.13 3.7 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	•	0	-	0	0	•	•	-	0	0		0
35A 3.13 3.7 A 7.982 12.283 4.783 7.503 4.900 3.680 7.065 7.984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	-	0	-	0	0	•	-	-	0	0		0
35A 3.7 5.82 7.982 12.283 4.783 7.503 4.900 3.680 7.065 7.984 0												-	Ö	ő	Ö	ő	-	0	Ö	ő	-	-	Ö	Ö	Ö	Ö
35A 5.82 8.59 G 5.772 7.321 3.619 4.628 3.213 2.515 3.809 3.826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	-	0	0	0	0	-	-	-	0	0	0	0
35A 5.82 8.59 A 7,982 12,263 4,783 7,503 4,900 3,680 7,065 7,984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	-	0	-	0	-	0	-	-	-	-	0	0	-	0
35A 8.59 9.19 A 15,351 19,655 8,901 10,406 9,925 5,431 8,329 2,892 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35A	5.82	8.59 A	7,982	12,263	4,783	7,503	4,900	3,680	7,065	7,984	-	0	0	0	0	0	0	0	0	0	-	0	0	0	0
35A 9.19 9.43 G 13,141 14,712 8,901 8,719 8,238 5,431 5,977 1,585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	0	0	0	0	0	0	-	-	0	0	0	0
35A 9.43 11 G 13,141 14,712 8,901 8,719 8,238 5,431 5,977 1,585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												-	0	0	-	0	-	0	0	-	-	-	0	0	0	0
												-	0	-	-	0	-	0	-	-	-	-	0	0	0	0
												-	-	-	-	0	-	0	-	-	-	-	-	0	-	-

Table F3	Pro	ject ESA Loadi	ings
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

16:05/2013 9:02 AM 64:13 PIA 2013 05 13 - SURAT.xlsx MODEL_INPUTS

ROAD	Start	End	Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
3251	0.000 km	0.120 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.9%	0.7%	0.7%	0.7%	221.4%	232.1%	242.4%	252.4%	261.9%	271.3%	280.1%
3251 3251	0.000 km 0.120 km	0.120 km 0.210 km	A G	0.0% 0.0%	0.0%	0.0% 0.0%	0.3% 1.4%	0.0% 0.0%	0.0%	0.1% 0.6%	0.0%	0.0%	0.0%	0.0%	0.6% 0.7%	0.6% 0.7%	0.6% 0.9%	0.6% 0.7%	0.6% 0.7%	0.6% 0.7%	207.9% 221.4%	216.2% 232.1%	224.3% 242.4%	232.1% 252.4%	239.6% 261.9%	246.7% 271.3%	253.6% 280.1%
3251	0.120 km	0.210 km	Α	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	207.9%	216.2%	224.3%	232.1%	239.6%	246.7%	253.6%
3251 3251	0.210 km 0.210 km	0.250 km 0.250 km	G A	0.0% 0.0%	0.0%	0.0%	1.4% 0.3%	0.0%	0.0%	0.6% 0.1%	0.0%	0.0%	0.0%	0.0%	0.7% 0.6%	0.7% 0.6%	0.9%	0.7% 0.6%	0.7% 0.6%	0.7% 0.6%	221.4% 207.9%	232.1% 216.2%	242.4% 224.3%	252.4% 232.1%	261.9% 239.6%	271.3% 246.7%	280.1% 253.6%
3251	0.250 km	0.280 km	Ğ	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.9%	0.7%	0.7%	0.7%	221.4%	232.1%	242.4%	252.4%	261.9%	271.3%	280.1%
3251 3251	0.250 km 0.280 km	0.280 km 0.630 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0%	0.1% 0.6%	0.0%	0.0%	0.0%	0.0%	0.6% 0.7%	0.6% 0.7%	0.6%	0.6% 0.7%	0.6% 0.7%	0.6%	207.9% 221.4%	216.2% 232.1%	224.3% 242.4%	232.1% 252.4%	239.6% 261.9%	246.7% 271.3%	253.6% 280.1%
3251	0.280 km	0.630 km	Α	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	207.9%	216.2%	224.3%	232.1%	239.6%	246.7%	253.6%
3251 3251	0.630 km 0.630 km	2.090 km 2.090 km	G A	0.0% 0.0%	0.0%	0.0%	1.4% 0.3%	0.0%	0.0%	0.6% 0.1%	0.0%	0.0%	0.0%	0.0%	0.7% 0.6%	0.7% 0.6%	0.9%	0.7% 0.6%	0.7% 0.6%	0.7% 0.6%	221.4% 207.9%	232.1% 216.2%	242.4% 224.3%	252.4% 232.1%	261.9% 239.6%	271.3% 246.7%	280.1% 253.6%
3251	2.090 km	3.210 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.9%	0.7%	0.7%	0.7%	221.4%	232.1%	242.4%	252.4%	261.9%	271.3%	280.1%
3251 3251	2.090 km 3.210 km	3.210 km 3.940 km	A G	0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	207.9% 221.4%	216.2% 232.1%	224.3% 242.4%	232.1% 252.4%	239.6% 261.9%	246.7% 271.3%	253.6% 280.1%
3251	3.210 km	3.940 km	Ä	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	207.9%	216.2%	224.3%	232.1%	239.6%	246.7%	253.6%
3251 3251	3.940 km 3.940 km	4.430 km 4.430 km	G A	0.0% 0.0%	0.0%	0.0%	1.4% 0.3%	0.0%	0.0%	0.6% 0.1%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7% 0.6%	0.9%	0.7% 0.6%	0.7%	0.7%	221.4% 207.9%	232.1% 216.2%	242.4% 224.3%	252.4% 232.1%	261.9% 239.6%	271.3% 246.7%	280.1% 253.6%
3251	4.430 km	4.790 km	Ĝ	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.9%	0.7%	0.7%	0.7%	221.4%	232.1%	242.4%	252.4%	261.9%	271.3%	280.1%
3251 3251	4.430 km 4.790 km	4.790 km 6.440 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0% 0.0%	0.1% 0.6%	0.0%	0.0%	0.0% 0.0%	0.0%	0.6% 0.7%	0.6% 0.7%	0.6%	0.6% 0.7%	0.6% 0.7%	0.6%	207.9% 221.4%	216.2% 232.1%	224.3% 242.4%	232.1% 252.4%	239.6% 261.9%	246.7% 271.3%	253.6% 280.1%
3251	4.790 km	6.440 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	207.9%	216.2%	224.3%	232.1%	239.6%	246.7%	253.6%
3251 3251	6.440 km 6.440 km	6.690 km 6.690 km	G	0.0% 0.0%	0.0%	0.0%	1.4% 0.3%	0.0%	0.0%	0.6% 0.1%	0.0%	0.0%	0.0%	0.0%	0.7% 0.6%	0.7% 0.6%	0.9%	0.7% 0.6%	0.7% 0.6%	0.7%	221.4% 207.9%	232.1% 216.2%	242.4% 224.3%	252.4% 232.1%	261.9% 239.6%	271.3% 246.7%	280.1% 253.6%
3251	6.690 km	7.370 km	Ğ	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	221.4%	232.1%	242.4%	252.1%	261.9%	271.3%	280.1%
3251 3251	6.690 km 7.370 km	7.370 km 9.340 km	A G	0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0%	0.1% 0.6%	0.0%	0.0%	0.0%	0.0%	0.6%	0.6%	0.6% 0.9%	0.6%	0.6% 0.7%	0.6%	207.9% 221.4%	216.2% 232.1%	224.3% 242.4%	232.1% 252.4%	239.6% 261.9%	246.7% 271.3%	253.6% 280.1%
3251	7.370 km	9.340 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.6%	0.7%	0.7%	0.7%	207.9%	216.2%	224.3%	232.4%	239.6%	246.7%	253.6%
3251 3251	9.340 km 9.340 km	9.630 km 9.630 km	G A	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.7%	0.7%	0.9%	0.7%	0.7%	0.7%	221.4% 207.9%	232.1% 216.2%	242.4% 224.3%	252.4% 232.1%	261.9% 239.6%	271.3% 246.7%	280.1% 253.6%
3251	9.630 km	9.800 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	34.0%	35.6%	5.3%	5.1%	5.0%	4.9%	207.9%	236.1%	246.4%	256.3%	265.8%	274.9%	283.8%
3251 3251	9.630 km	9.800 km 9.850 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	31.9% 34.0%	33.1% 35.6%	4.3%	4.2% 5.1%	4.1% 5.0%	4.0%	211.2% 225.5%	219.6% 236.1%	227.5% 246.4%	235.3% 256.3%	242.6% 265.8%	249.7% 274.9%	256.7% 283.8%
3251	9.800 km 9.800 km	9.850 km	G A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	34.0%	33.1%	5.3% 4.3%	4.2%	4.1%	4.9%	225.5%	236.1%	246.4%	235.3%	242.6%	249.7%	283.8%
3251	9.850 km	13.580 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	125.7%	97.9%	95.6%	93.3%	94.5%	134.6%	128.7%	91.4%	88.5%	86.7%	84.9%	304.0%	313.0%	321.8%	330.3%	338.5%	346.3%	353.9%
3251 3251	9.850 km 13.580 km	13.580 km 13.750 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0%	87.7% 125.7%	80.9% 97.9%	78.9% 95.6%	77.0% 93.3%	75.9% 94.5%	107.6% 134.6%	106.2% 128.7%	74.9% 91.4%	73.1% 88.5%	71.6% 86.7%	70.1% 84.9%	276.0% 304.0%	283.1% 313.0%	289.8% 321.8%	296.4% 330.3%	302.7% 338.5%	308.7% 346.3%	314.6% 353.9%
3251	13.580 km	13.750 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	87.7%	80.9%	78.9%	77.0%	75.9%	107.6%	106.2%	74.9%	73.1%	71.6%	70.1%	276.0%	283.1%	289.8%	296.4%	302.7%	308.7%	314.6%
3251 3251	13.750 km 13.750 km	14.920 km 14.920 km	G A	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	125.7% 87.7%	97.9% 80.9%	95.6% 78.9%	93.3% 77.0%	94.5% 75.9%	134.6% 107.6%	128.7% 106.2%	91.4% 74.9%	88.5% 73.1%	86.7% 71.6%	84.9% 70.1%	304.0% 276.0%	313.0% 283.1%	321.8% 289.8%	330.3% 296.4%	338.5% 302.7%	346.3% 308.7%	353.9% 314.6%
3251	14.920 km	16.410 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	125.7%	97.9%	95.6%	93.3%	94.5%	134.6%	128.7%	91.4%	88.5%	86.7%	84.9%	304.0%	313.0%	321.8%	330.3%	338.5%	346.3%	353.9%
3251 3251	14.920 km 16.410 km	16.410 km 16.680 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	0.0%	87.7% 125.7%	80.9% 97.9%	78.9% 95.6%	77.0% 93.3%	75.9% 94.5%	107.6% 134.6%	106.2% 128.7%	74.9% 91.4%	73.1% 88.5%	71.6% 86.7%	70.1% 84.9%	276.0% 304.0%	283.1% 313.0%	289.8% 321.8%	296.4% 330.3%	302.7% 338.5%	308.7% 346.3%	314.6% 353.9%
3251	16.410 km	16.680 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	87.7%	80.9%	78.9%	77.0%	75.9%	107.6%	106.2%	74.9%	73.1%	71.6%	70.1%	276.0%	283.1%	289.8%	296.4%	302.7%	308.7%	314.6%
3251 3251	16.680 km 16.680 km	19.900 km 19.900 km	G A	0.0% 0.0%	0.0%	0.0%	1.4% 0.3%	0.0%	0.0%	125.7% 87.7%	97.9% 80.9%	95.6% 78.9%	93.3% 77.0%	94.5% 75.9%	191.1% 161.7%	139.9% 116.5%	95.2% 78.0%	92.2% 76.1%	90.3% 74.6%	88.5% 73.1%	307.4% 278.9%	316.5% 285.9%	325.1% 292.5%	333.6% 299.1%	341.6% 305.3%	349.4% 311.4%	356.9% 317.1%
3251	19.900 km	21.460 km	G	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	125.7%	97.9%	95.6%	93.3%	94.5%	675.6%	181.2%	128.0%	124.3%	121.7%	119.2%	337.6%	346.0%	354.2%	362.0%	369.6%	376.9%	383.9%
3251 3251	19.900 km 21.460 km	21.460 km 21.970 km	A G	0.0% 0.0%	0.0%	0.0% 0.0%	0.3% 1.4%	0.0%	0.0%	87.7% 125.7%	80.9% 97.9%	78.9% 95.6%	77.0% 93.3%	75.9% 94.5%	616.8% 675.6%	151.5% 181.2%	105.0% 128.0%	102.6% 124.3%	100.5% 121.7%	98.4% 119.2%	303.8% 337.6%	310.3% 346.0%	316.6% 354.2%	322.6% 362.0%	328.5% 369.6%	334.0% 376.9%	339.4% 383.9%
3251	21.460 km	21.970 km	Α	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	87.7%	80.9%	78.9%	77.0%	75.9%	616.8%	151.5%	105.0%	102.6%	100.5%	98.4%	303.8%	310.3%	316.6%	322.6%	328.5%	334.0%	339.4%
3251 3251	21.970 km 21.970 km	23.140 km 23.140 km	G A	0.0% 0.0%	0.0%	0.0% 0.0%	1.4% 0.3%	0.0% 0.0%	0.0%	125.7% 87.7%	97.9% 80.9%	95.6% 78.9%	93.3% 77.0%	94.5% 75.9%	675.6% 616.8%	181.2% 151.5%	128.0% 105.0%	124.3% 102.6%	121.7% 100.5%	119.2% 98.4%	337.6% 303.8%	346.0% 310.3%	354.2% 316.6%	362.0% 322.6%	369.6% 328.5%	376.9% 334.0%	383.9% 339.4%
3251	23.140 km	23.590 km	Ğ	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	125.7%	97.9%	95.6%	93.3%	94.5%	675.6%	181.2%	128.0%	124.3%	121.7%	119.2%	337.6%	346.0%	354.2%	362.0%	369.6%	376.9%	383.9%
3251 3251	23.140 km 23.590 km	23.590 km 25.060 km	A G	0.0% 0.0%	0.0%	0.0% 0.0%	0.3% 1.4%	0.0%	0.0%	87.7% 125.7%	80.9% 97.9%	78.9% 95.6%	77.0% 93.3%	75.9% 94.5%	616.8% 675.6%	151.5% 181.2%	105.0% 128.0%	102.6% 124.3%	100.5% 121.7%	98.4% 119.2%	303.8% 337.6%	310.3% 346.0%	316.6% 354.2%	322.6% 362.0%	328.5% 369.6%	334.0% 376.9%	339.4% 383.9%
3251	23.590 km	25.060 km	Α	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	87.7%	80.9%	78.9%	77.0%	75.9%	616.8%	151.5%	105.0%	102.6%	100.5%	98.4%	303.8%	310.3%	316.6%	322.6%	328.5%	334.0%	339.4%
3251 3251	25.060 km 25.060 km	25.730 km 25.730 km	G A	0.0%	0.0%	0.0%	1.4%	0.0%	17.4% 73.4%	479.2% 418.3%	380.1% 321.1%	370.9% 313.3%	362.1% 305.9%	502.4% 419.4%	772.2% 711.6%	587.0% 499.2%	383.6% 325.4%	374.7% 315.5%	366.9% 309.0%	359.5% 302.8%	364.7% 332.0%	357.6% 325.5%	350.8% 319.3%	340.2% 307.4%	326.7% 298.4%	320.8% 293.0%	315.1% 287.8%
3251	25.730 km	27.900 km	Ĝ	0.0%	0.0%	0.0%	1.4%	0.0%	17.4%	279.2%	366.0%	357.1%	348.7%	340.7%	369.7%	332.3%	320.7%	313.1%	306.6%	300.4%	306.8%	300.8%	295.1%	295.1%	283.6%	278.5%	273.6%
3251 3251	25.730 km 27.900 km	27.900 km 28.020 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	73.4% 17.4%	256.1% 293.1%	309.4% 368.3%	302.0% 359.3%	294.8% 350.9%	288.0% 353.1%	384.8% 399.8%	291.9% 354.6%	273.5% 330.8%	264.7% 323.0%	259.2% 316.3%	254.0% 309.9%	284.2% 316.1%	278.6% 309.9%	273.3% 304.0%	270.1% 319.1%	262.8% 290.5%	258.0% 285.3%	253.5% 280.2%
3251	27.900 km	28.020 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	73.4%	291.1%	311.3%	303.8%	296.6%	315.7%	454.3%	334.5%	281.9%	272.9%	267.2%	261.8%	291.8%	286.2%	280.7%	282.7%	268.5%	263.6%	258.9%
3251 3251	28.020 km 28.020 km	29.940 km 29.940 km	G	0.0% 0.0%	0.0%	0.0% 0.0%	1.4% 0.3%	0.0%	17.4% 73.4%	293.1% 291.1%	368.3% 311.3%	359.3% 303.8%	350.9% 296.6%	353.1% 315.7%	399.8% 454.3%	354.6% 334.5%	330.8% 281.9%	323.0% 272.9%	316.3% 267.2%	309.9% 261.8%	316.1% 291.8%	309.9% 286.2%	304.0% 280.7%	319.1% 282.7%	290.5% 268.5%	285.3% 263.6%	280.2% 258.9%
3251	29.940 km	31.190 km	Ğ	0.0%	0.0%	0.0%	1.4%	0.0%	17.4%	293.1%	368.3%	359.3%	350.9%	353.1%	399.8%	354.6%	330.8%	323.0%	316.3%	309.9%	316.1%	309.9%	304.0%	319.1%	290.5%	285.3%	280.2%
3251 3251	29.940 km 31.190 km	31.190 km 37.830 km	A G	0.0% 0.0%	0.0%	0.0%	0.3% 1.4%	0.0%	73.4% 17.4%	291.1% 293.1%	311.3% 368.3%	303.8% 359.3%	296.6% 350.9%	315.7% 353.1%	454.3% 399.8%	334.5% 354.6%	281.9% 330.8%	272.9% 323.0%	267.2% 316.3%	261.8% 309.9%	291.8% 316.1%	286.2% 309.9%	280.7% 304.0%	282.7% 319.1%	268.5% 290.5%	263.6% 285.3%	258.9% 280.2%
3251	31.190 km	37.830 km	A	0.0%	0.0%	0.0%	0.3%	0.0%	73.4%	293.1%	311.3%	303.8%	296.6%	315.7%	454.3%	334.5%	281.9%	272.9%	267.2%	261.8%	291.8%	286.2%	280.7%	282.7%	268.5%	263.6%	258.9%
3251	37.830 km	38.895 km	G	0.0%	0.0%	0.0%	1051.5%	522.4%	477.2%	672.5%	986.1%	969.3%	935.9%	789.6%	779.1%	812.1% 552.0%	817.7%	811.2% 545.6%	844.7% 568.9%	840.8%	882.9%	854.4%	809.9%	794.1%	742.3%	716.1%	688.5% 510.9%
3251 3251	37.830 km 38.950 km	38.895 km 44.210 km	A G	0.0% 0.0%	0.0%	0.0%	827.4% 1051.5%	191.0% 522.4%	253.6% 477.2%	429.0% 672.5%	531.5% 986.1%	527.4% 969.3%	526.2% 935.9%	508.6% 789.6%	566.7% 779.1%	552.0% 812.1%	537.1% 817.7%	545.6% 811.2%	568.9% 844.7%	583.8% 840.8%	612.8% 882.9%	600.9% 854.4%	585.1% 809.9%	580.0% 794.1%	551.4% 742.3%	533.0% 716.1%	510.9% 688.5%
3251	38.950 km	44.210 km	A	0.0%	0.0%	0.0%	827.4%	191.0%	253.6%	429.0%	531.5%	527.4%	526.2%	508.6%	566.7%	552.0%	537.1%	545.6%	568.9%	583.8%	612.8%	600.9%	585.1%	580.0%	551.4%	533.0%	510.9%
3251 3251	44.210 km 44.210 km	44.300 km 44.300 km	G A	0.0% 0.0%	0.0%	0.0%	69.9% 53.2%	379.3% 160.7%	421.8% 241.8%	573.6% 408.0%	714.4% 473.9%	806.8% 493.0%	752.2% 487.2%	765.1% 503.4%	779.1% 566.7%	812.1% 552.0%	794.8% 532.3%	811.2% 545.6%	844.7% 568.9%	840.8% 583.8%	882.9% 612.8%	854.4% 600.9%	809.9% 585.1%	794.1% 580.0%	742.3% 551.4%	716.1% 533.0%	688.5% 510.9%
3251	44.300 km	44.360 km	Ğ	0.0%	0.0%	0.0%	69.9%	379.3%	421.8%	573.6%	714.4%	806.8%	752.2%	765.1%	779.1%	812.1%	794.8%	811.2%	844.7%	840.8%	882.9%	854.4%	809.9%	794.1%	742.3%	716.1%	688.5%
3251 3251	44.300 km 44.360 km	44.360 km 44.520 km	A G	0.0% 0.0%	0.0% 1.6%	0.0%	53.2% 572.2%	160.7% 925.3%	241.8% 1061.4%	408.0% 1090.2%	473.9% 1651.6%	493.0% 1948.2%	487.2% 1802.6%	503.4% 1684.1%	566.7% 1848.8%	552.0% 2203.0%	532.3% 2072.0%	545.6% 2095.6%	568.9% 2138.4%	583.8% 1944.3%	612.8% 2080.5%	600.9% 1832.5%	585.1% 1471.6%	580.0% 1376.9%	551.4% 1320.5%	533.0% 1192.0%	510.9% 1153.3%
3251	44.360 km	44.520 km	A	0.0%	2.7%	184.4%	500.3%	667.7%	831.8%	847.3%	1288.9%	1464.0%	1368.0%	1268.4%	1460.6%	1732.4%	1592.6%	1611.8%	1642.5%	1496.8%	1603.7%	1388.7%	1106.4%	1066.2%	1022.1%	927.9%	896.6%
3251 3251	44.520 km 44.520 km	44.630 km 44.630 km	G A	0.0% 0.0%	1.6% 2.7%	127.9% 184.4%	572.2% 500.3%	925.3% 667.7%	1061.4% 831.8%	1090.2% 847.3%	1651.6% 1288.9%	1948.2% 1464.0%	1802.6% 1368.0%	1684.1% 1268.4%	1848.8% 1460.6%	2203.0% 1732.4%	2072.0% 1592.6%	2095.6% 1611.8%	2138.4% 1642.5%	1944.3% 1496.8%	2080.5% 1603.7%	1832.5% 1388.7%	1471.6% 1106.4%	1376.9% 1066.2%	1320.5% 1022.1%	1192.0% 927.9%	1153.3% 896.6%
3251	44.630 km	44.860 km	Ğ	0.0%	1.6%	127.9%	572.2%	925.3%	1061.4%	1090.2%	1651.6%	1948.2%	1802.6%	1684.1%	1848.8%	2203.0%	2072.0%	2095.6%	2138.4%	1944.3%	2080.5%	1832.5%	1471.6%	1376.9%	1320.5%	1192.0%	1153.3%
3251 3251	44.630 km 44.860 km	44.860 km 45.090 km	A G	0.0%	2.7% 1.6%	184.4% 127.9%	500.3% 572.2%	667.7% 925.3%	831.8%	847.3%	1288.9%	1464.0% 1948.2%	1368.0%	1268.4%	1460.6%	1732.4%	1592.6%	1611.8% 2095.6%	1642.5%	1496.8% 1944.3%	1603.7% 2080.5%	1388.7% 1832.5%	1106.4% 1471.6%	1066.2% 1376.9%	1022.1% 1320.5%	927.9% 1192.0%	896.6% 1153.3%
3251	44.860 km	45.090 km	Ā	0.0%	2.7%	184.4%	500.3%	667.7%	831.8%	847.3%	1288.9%	1464.0%		1268.4%	1460.6%	1732.4%	1592.6%		1642.5%	1496.8%	1603.7%	1388.7%	1106.4%	1066.2%	1022.1%	927.9%	896.6%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

ROAD	Start	End	Direction	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
3251 3251	0.000 km 0.000 km	0.120 km 0.120 km	G A	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	0.120 km	0.210 km 0.210 km	G	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	0.120 km 0.210 km	0.210 km	A G	288.7%	298.5%	304.7%	312.2%	319.7%	178.5%	148.5%	146.9%	132.9%	119.2%	105.9%	93.0%	80.6%	49.0% 68.4%	56.6%	30.0% 45.2%	20.9% 34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	0.210 km	0.250 km	A	260.4%	268.1%	272.9%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	0.250 km 0.250 km	0.280 km 0.280 km	G A	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	0.280 km	0.630 km	G	288.7%	298.5%	304.7%	312.2%	319.7%	178.5%	148.5%	146.9%	132.9%	119.2%	105.9%	93.0%	80.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	0.280 km 0.630 km	0.630 km 2.090 km	A G	260.4% 288.7%	268.1% 298.5%	272.9% 304.7%	278.7% 312.2%	284.6% 319.7%	150.7% 178.5%	122.6% 148.5%	113.1% 146.9%	101.6% 132.9%	90.4% 119.2%	79.6% 105.9%	69.1% 93.0%	58.9% 80.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	0.630 km	2.090 km	A	260.4%	268.1%	272.9%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	2.090 km 2.090 km	3.210 km 3.210 km	G A	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	3.210 km	3.940 km	Ğ	288.7%	298.5%	304.7%	312.2%	319.7%	178.5%	148.5%	146.9%	132.9%	119.2%	105.9%	93.0%	80.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	3.210 km 3.940 km	3.940 km 4.430 km	A G	260.4% 288.7%	268.1% 298.5%	272.9% 304.7%	278.7% 312.2%	284.6% 319.7%	150.7% 178.5%	122.6% 148.5%	113.1% 146.9%	101.6% 132.9%	90.4% 119.2%	79.6% 105.9%	69.1% 93.0%	58.9% 80.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	3.940 km	4.430 km	A	260.4%	268.1%	272.9%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	4.430 km 4.430 km	4.790 km 4.790 km	G	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	4.430 km	6.440 km	G	288.7%	298.5%	304.7%	312.2%	319.7%	178.5%	148.5%	146.9%	132.9%	119.2%	105.9%	93.0%	80.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	4.790 km 6.440 km	6.440 km 6.690 km	A G	260.4% 288.7%	268.1% 298.5%	272.9% 304.7%	278.7% 312.2%	284.6% 319.7%	150.7% 178.5%	122.6% 148.5%	113.1% 146.9%	101.6% 132.9%	90.4% 119.2%	79.6% 105.9%	69.1% 93.0%	58.9% 80.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	6.440 km	6.690 km	A	260.4%	298.5%	272.9%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	45.2% 30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	6.690 km 6.690 km	7.370 km 7.370 km	G	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	7.370 km	7.370 km 9.340 km	A G	260.4%	268.1%	304.7%	312.2%	284.6% 319.7%	150.7% 178.5%	122.6% 148.5%	113.1% 146.9%	101.6%	90.4% 119.2%	79.6% 105.9%	93.0%	58.9% 80.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	7.370 km	9.340 km	A	260.4%	268.1%	272.9%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	9.340 km 9.340 km	9.630 km 9.630 km	G A	288.7% 260.4%	298.5% 268.1%	304.7% 272.9%	312.2% 278.7%	319.7% 284.6%	178.5% 150.7%	148.5% 122.6%	146.9% 113.1%	132.9% 101.6%	119.2% 90.4%	105.9% 79.6%	93.0% 69.1%	80.6% 58.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%
3251	9.630 km	9.800 km	G	292.3%	302.1%	306.6%	312.2%	319.7%	178.5%	148.5%	146.9%	132.9%	119.2%	105.9%	93.0%	80.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	9.630 km 9.800 km	9.800 km 9.850 km	A G	263.3% 292.3%	269.9% 302.1%	273.2% 306.6%	278.7% 312.2%	284.6% 319.7%	150.7% 178.5%	122.6% 148.5%	113.1% 146.9%	101.6% 132.9%	90.4% 119.2%	79.6% 105.9%	69.1% 93.0%	58.9% 80.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
3251	9.800 km	9.850 km	A	263.3%	269.9%	273.2%	278.7%	284.6%	150.7%	122.6%	113.1%	101.6%	90.4%	79.6%	69.1%	58.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	9.850 km 9.850 km	13.580 km 13.580 km	G A	361.2% 320.2%	369.8% 325.9%	373.2% 328.2%	377.7% 332.8%	384.1% 337.8%	241.8% 203.0%	210.9% 174.1%	208.3% 163.8%	193.3% 151.5%	178.7% 139.6%	164.6% 128.0%	150.8% 116.8%	137.6% 105.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	13.580 km	13.750 km	Ğ	361.2%	369.8%	373.2%	377.7%	384.1%	241.8%	210.9%	208.3%	193.3%	178.7%	164.6%	150.8%	137.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	13.580 km 13.750 km	13.750 km 14.920 km	A G	320.2% 361.2%	325.9% 369.8%	328.2% 373.2%	332.8% 377.7%	337.8% 384.1%	203.0% 241.8%	174.1% 210.9%	163.8% 208.3%	151.5% 193.3%	139.6% 178.7%	128.0% 164.6%	116.8% 150.8%	105.9% 137.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%
3251	13.750 km	14.920 km	A	320.2%	325.9%	328.2%	332.8%	337.8%	203.0%	174.1%	163.8%	151.5%	139.6%	128.0%	116.8%	105.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	14.920 km 14.920 km	16.410 km 16.410 km	G A	361.2% 320.2%	369.8% 325.9%	373.2% 328.2%	377.7% 332.8%	384.1% 337.8%	241.8% 203.0%	210.9% 174.1%	208.3% 163.8%	193.3% 151.5%	178.7% 139.6%	164.6% 128.0%	150.8% 116.8%	137.6% 105.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	16.410 km	16.680 km	G	361.2%	369.8%	373.2%	377.7%	384.1%	241.8%	210.9%	208.3%	193.3%	178.7%	164.6%	150.8%	137.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	16.410 km 16.680 km	16.680 km 19.900 km	A G	320.2% 364.1%	325.9% 371.5%	328.2% 373.3%	332.8% 377.7%	337.8% 384.1%	203.0% 241.8%	174.1% 210.9%	163.8% 208.3%	151.5% 193.3%	139.6% 178.7%	128.0% 164.6%	116.8% 150.8%	105.9% 137.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	16.680 km	19.900 km	A	322.7%	325.0%	328.0%	332.8%	337.8%	203.0%	174.1%	163.8%	151.5%	139.6%	128.0%	116.8%	105.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	19.900 km	21.460 km	G	390.8%	399.2%	373.8%	377.7%	384.1%	241.8%	210.9%	208.3%	193.3%	178.7%	164.6%	150.8%	137.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	19.900 km 21.460 km	21.460 km 21.970 km	G	344.6% 390.8%	330.4% 399.2%	328.1% 373.8%	332.8% 377.7%	337.8% 384.1%	203.0% 241.8%	174.1% 210.9%	163.8% 208.3%	151.5% 193.3%	139.6% 178.7%	128.0% 164.6%	116.8% 150.8%	105.9% 137.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
3251	21.460 km	21.970 km	A	344.6%	330.4%	328.1%	332.8%	337.8%	203.0%	174.1%	163.8%	151.5%	139.6%	128.0%	116.8%	105.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	21.970 km 21.970 km	23.140 km 23.140 km	G A	390.8% 344.6%	399.2% 330.4%	373.8% 328.1%	377.7% 332.8%	384.1% 337.8%	241.8% 203.0%	210.9% 174.1%	208.3% 163.8%	193.3% 151.5%	178.7% 139.6%	164.6% 128.0%	150.8% 116.8%	137.6% 105.9%	68.4% 49.0%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	23.140 km	23.590 km	G	390.8%	399.2%	373.8%	377.7%	384.1%	241.8%	210.9%	208.3%	193.3%	178.7%	164.6%	150.8%	137.6%	68.4%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	23.140 km 23.590 km	23.590 km 25.060 km	A G	344.6% 390.8%	330.4% 399.2%	328.1% 373.8%	332.8% 377.7%	337.8% 384.1%	203.0% 241.8%	174.1% 210.9%	163.8% 208.3%	151.5% 193.3%	139.6% 178.7%	128.0% 164.6%	116.8% 150.8%	105.9% 137.6%	49.0% 68.4%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	23.590 km	25.060 km	A	344.6%	330.4%	328.1%	332.8%	337.8%	203.0%	174.1%	163.8%	151.5%	139.6%	128.0%	116.8%	105.9%	49.0%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	25.060 km 25.060 km	25.730 km 25.730 km	G A	302.5% 276.9%	312.0% 261.0%	266.6% 242.8%	254.4% 235.8%	250.3% 232.0%	237.9% 204.5%	232.6% 196.6%	240.3% 194.8%	236.7% 191.8%	233.1% 188.9%	229.6% 186.1%	226.3% 183.4%	337.8% 248.9%	166.5% 79.2%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251	25.730 km	27.900 km	G	268.8%	298.2%	265.4%	254.4%	250.3%	237.9%	232.6%	240.3%	236.7%	233.1%	229.6%	226.3%	337.8%	166.5%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	25.730 km 27.900 km	27.900 km 28.020 km	A G	249.0% 287.0%	249.6% 333.1%	241.7% 283.4%	235.8% 254.4%	232.0% 250.3%	204.5% 237.9%	196.6% 232.6%	194.8% 240.3%	191.8% 236.7%	188.9% 233.1%	186.1% 229.6%	183.4% 226.3%	248.9% 337.8%	79.2% 166.5%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
3251	27.900 km	28.020 km	A	258.5%	264.2%	248.9%	235.8%	232.0%	204.5%	196.6%	194.8%	191.8%	188.9%	186.1%	183.4%	248.9%	79.2%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	28.020 km 28.020 km	29.940 km 29.940 km	G A	287.0% 258.5%	333.1% 264.2%	283.4% 248.9%	254.4% 235.8%	250.3% 232.0%	237.9% 204.5%	232.6% 196.6%	240.3% 194.8%	236.7% 191.8%	233.1% 188.9%	229.6% 186.1%	226.3% 183.4%	337.8% 248.9%	166.5% 79.2%	56.6% 39.3%	45.2% 30.0%	34.0% 20.9%	23.2% 12.0%	12.6% 3.4%	1.8% 0.3%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%
3251	29.940 km	31.190 km	Ğ	287.0%	333.1%	283.4%	254.4%	250.3%	237.9%	232.6%	240.3%	236.7%	233.1%	229.6%	226.3%	337.8%	166.5%	56.6%	45.2%	34.0%	23.2%	12.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	29.940 km 31.190 km	31.190 km 37.830 km	A G	258.5% 287.0%	264.2% 333.1%	248.9% 283.4%	235.8% 254.4%	232.0% 250.3%	204.5% 237.9%	196.6% 232.6%	194.8% 240.3%	191.8% 236.7%	188.9% 233.1%	186.1% 229.6%	183.4% 226.3%	248.9% 337.8%	79.2% 166.5%	39.3% 56.6%	30.0% 45.2%	20.9% 34.0%	12.0% 23.2%	3.4% 12.6%	0.3% 1.8%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%
3251	31.190 km	37.830 km	A	258.5%	264.2%	248.9%	235.8%	232.0%	204.5%	196.6%	194.8%	191.8%	188.9%	186.1%	183.4%	248.9%	79.2%	39.3%	30.0%	20.9%	12.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
3251 3251	37.830 km 37.830 km	38.895 km 38.895 km	G	675.6% 495.6%	706.0%	614.6% 441.4%	565.6%	526.6% 385.4%	474.7%	431.5%	414.7%	402.9%	391.3%	380.8%	373.3% 256.4%	482.5% 320.7%	310.5% 151.1%	197.8% 109.6%	184.0% 98.9%	170.3% 88.4%	156.9% 78.0%	146.6%	133.4%	322.6%	0.0%	0.0%	0.0%	0.0%
3251	37.830 km 38.950 km	44.210 km	A G	495.6% 675.6%	490.1% 706.0%	614.6%	413.2% 565.6%	526.6%	342.0% 474.7%	308.7% 431.5%	287.3% 414.7%	278.5% 402.9%	269.7% 391.3%	261.8% 380.8%	373.3%	320.7% 482.5%	310.5%	109.6%	98.9% 184.0%	170.3%	156.9%	70.1% 146.6%	65.7% 133.4%	243.1% 322.6%	0.0%	0.0%	0.0% 0.0%	0.0%
3251	38.950 km	44.210 km	A	495.6%	490.1%	441.4%	413.2%	385.4%	342.0%	308.7%	287.3%	278.5%	269.7%	261.8%	256.4%	320.7%	151.1%	109.6%	98.9% 184.0%	88.4%	78.0%	70.1%	65.7%	243.1%	0.0%	0.0%	0.0%	0.0%
3251 3251	44.210 km 44.210 km	44.300 km 44.300 km	G A	675.6% 495.6%	706.0% 490.1%	614.6% 441.4%	565.6% 413.2%	526.6% 385.4%	474.7% 342.0%	431.5% 308.7%	414.7% 287.3%	402.9% 278.5%	391.3% 269.7%	380.8% 261.8%	373.3% 256.4%	482.5% 320.7%	310.5% 151.1%	197.8% 109.6%	184.0% 98.9%	170.3% 88.4%	156.9% 78.0%	146.6% 70.1%	133.4% 65.7%	320.3% 241.2%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
3251	44.300 km	44.360 km	G	675.6%	706.0%	614.6%	565.6%	526.6%	474.7%	431.5%	414.7%	402.9%	391.3%	380.8%	373.3%	482.5%	310.5%	197.8%	184.0%	170.3%	156.9%	146.6%	133.4%	320.3%	0.0%	0.0%	0.0%	0.0%
3251 3251	44.300 km 44.360 km	44.360 km 44.520 km	A G	495.6% 1172.8%	490.1% 1036.0%	441.4% 964.5%	413.2% 875.0%	385.4% 831.0%	342.0% 774.2%	308.7% 726.2%	287.3% 704.9%	278.5% 688.6%	269.7% 672.7%	261.8% 711.1%	256.4% 587.5%	320.7% 693.6%	151.1% 518.5%	109.6% 402.9%	98.9% 386.3%	88.4% 369.9%	78.0% 353.7%	70.1% 340.8%	65.7% 325.1%	241.2% 509.5%	0.0% 88.1%	0.0% 0.0%	0.0%	0.0%
3251	44.360 km	44.520 km	A	910.9%	764.4%	719.7%	673.1%	641.1%	593.6%	556.2%	531.1%	518.5%	506.1%	538.4%	437.1%	498.8%	326.7%	282.7%	269.6%	256.7%	244.1%	234.0%	227.4%	400.9%	27.2%	0.0%	0.0%	0.0%
3251 3251	44.520 km 44.520 km	44.630 km 44.630 km	G A	1172.8% 910.9%	1036.0% 764.4%	964.5% 719.7%	875.0% 673.1%	831.0% 641.1%	774.2% 593.6%	726.2% 556.2%	704.9% 531.1%	688.6% 518.5%	672.7% 506.1%	711.1% 538.4%	587.5% 437.1%	693.6% 498.8%	518.5% 326.7%	402.9% 282.7%	386.3% 269.6%	369.9% 256.7%	353.7% 244.1%	340.8% 234.0%	325.1% 227.4%	509.5% 400.9%	88.1% 27.2%	0.0%	0.0%	0.0%
3251	44.630 km	44.860 km	G	1172.8%	1036.0%	964.5%	875.0%	831.0%	774.2%	726.2%	704.9%	688.6%	672.7%	711.1%	587.5%	693.6%	518.5%	402.9%	386.3%	369.9%	353.7%	340.8%	325.1%	509.5%	88.1%	0.0%	0.0%	0.0%
3251 3251	44.630 km 44.860 km	44.860 km 45.090 km	A G	910.9% 1172.8%	764.4% 1036.0%	719.7% 964.5%	673.1% 875.0%	641.1% 831.0%	593.6% 774.2%	556.2% 726.2%	531.1% 704.9%	518.5% 688.6%	506.1% 672.7%	538.4% 711.1%	437.1% 587.5%	498.8% 693.6%	326.7% 518.5%	282.7% 402.9%	269.6% 386.3%	256.7% 369.9%	244.1% 353.7%	234.0% 340.8%	227.4% 325.1%	400.9% 509.5%	27.2% 88.1%	0.0%	0.0%	0.0%
3251	44.860 km	45.090 km	A	910.9%	764.4%	719.7%	673.1%	641.1%	593.6%	556.2%	704.9% 531.1%	518.5%	506.1%	538.4%	437.1%	498.8%	326.7%	282.7%	269.6%	256.7%	244.1%	234.0%	227.4%	400.9%	27.2%	0.0%	0.0%	0.0%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

ROAD	Start	End	Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
3251	45.090 km	45.320 km	G	0.0%	1.6%	127.9%	572.2%	925.3%	1061.4%	1090.2%	1651.6%	1948.2%		1684.1%	1848.8%		2072.0%			1944.3%	2080.5%	1832.5%	1471.6%	1376.9%	1320.5%	1192.0%	1153.3%
3251 3251	45.090 km 45.320 km	45.320 km 45.610 km	A G	0.0%	2.7% 0.5%	184.4% 124.6%	500.3% 276.5%	667.7% 380.2%	831.8% 525.1%	847.3% 284.8%	1288.9% 639.3%	1464.0% 958.7%	1368.0% 823.3%	1268.4% 731.2%	1460.6% 917.3%	1732.4% 1294.4%	1592.6% 1190.2%	1611.8% 1241.6%		1496.8% 1136.2%	1603.7% 1299.9%	1388.7% 1062.5%	1106.4% 719.9%	1066.2% 626.1%	1022.1% 563.5%	927.9% 522.9%	896.6% 471.4%
3251	45.320 km	45.610 km	A	0.0%	1.8%	181.7%	256.1%	217.7%	389.0%	182.3%	453.1%	646.9%	559.4%	481.6%	691.5%	982.2%	864.5%	906.6%	957.2%	829.6%	959.2%	752.9%	485.8%	446.2%	397.0%	375.5%	333.5%
18C	80.175 km	80.365 km	G	0.0%	0.0%	2.6%	14.4%	21.5%	19.3%	35.7%	35.7%	36.7%	37.4%	40.7%	38.6%	34.1%	34.4%	32.1%	32.4%	32.3%	41.9%	42.5%	42.8%	44.1%	43.1%	41.3%	41.7%
18C 18C	80.175 km 80.365 km	80.365 km 80.485 km	A G	0.0% 0.0%	0.0%	0.3% 2.6%	6.1% 14.4%	16.9% 21.5%	16.7% 19.3%	33.5% 35.7%	32.6% 35.7%	32.1% 36.7%	31.5% 37.4%	37.5% 40.7%	31.8% 38.6%	29.8% 34.1%	29.2% 34.4%	28.8% 32.1%	29.2% 32.4%	28.8% 32.3%	37.4% 41.9%	38.2% 42.5%	38.4% 42.8%	38.7% 44.1%	39.0% 43.1%	36.5% 41.3%	36.7% 41.7%
18C	80.365 km	80.485 km	A	0.0%	0.0%	0.3%	6.1%	16.9%	16.7%	33.5%	32.6%	32.1%	31.5%	37.5%	31.8%	29.8%	29.2%	28.8%	29.2%	28.8%	37.4%	38.2%	38.4%	38.7%	39.0%	36.5%	36.7%
18C	80.485 km	80.615 km	G	0.0%	0.0%	2.6%	14.4%	21.5%	19.3%	35.7%	35.7%	36.7%	37.4%	40.7%	38.6%	34.1%	34.4%	32.1%	32.4%	32.3%	41.9%	42.5%	42.8%	44.1%	43.1%	41.3%	41.7%
18C 18C	80.485 km 80.615 km	80.615 km 80.645 km	A G	0.0% 0.0%	0.0%	0.3% 2.6%	6.1% 14.4%	16.9% 21.5%	16.7% 19.3%	33.5% 35.7%	32.6% 35.7%	32.1% 36.7%	31.5% 37.4%	37.5% 40.9%	31.8% 38.8%	29.8% 34.7%	29.2% 35.1%	28.8% 32.9%	29.2% 33.1%	28.8% 33.1%	37.4% 42.8%	38.2% 43.4%	38.4% 43.7%	38.7% 45.1%	39.0% 44.0%	36.5% 42.2%	36.7% 42.6%
18C	80.615 km	80.645 km	A	0.0%	0.0%	0.3%	6.1%	16.9%	16.7%	35.7%	35.7%	36.7%	31.5%	37.7%	38.8%	34.7%	29.8%	32.9% 29.4%	29.8%	29.5%	42.8% 38.2%	43.4% 39.0%	43.7% 39.1%	45.1% 39.6%	39.8%	42.2% 37.3%	42.6% 37.5%
18C	80.645 km	80.705 km	G	0.0%	0.0%	2.6%	14.4%	21.5%	19.3%	35.7%	35.7%	36.7%	37.4%	40.9%	38.8%	34.7%	35.1%	32.9%	33.1%	33.1%	42.8%	43.4%	43.7%	45.1%	44.0%	42.2%	42.6%
18C	80.645 km	80.705 km	A	0.0%	0.0%	0.3%	6.1% 14.4%	16.9%	16.7%	33.5%	32.6%	32.1% 36.7%	31.5% 37.4%	37.7%	32.0% 38.8%	30.3% 34.7%	29.8%	29.4% 32.9%	29.8% 33.1%	29.5%	38.2% 42.8%	39.0%	39.1% 43.7%	39.6% 45.1%	39.8% 44.0%	37.3%	37.5%
18C 18C	80.705 km 80.705 km	80.875 km 80.875 km	G A	0.0% 0.0%	0.0%	0.3%	14.4% 6.1%	21.5% 16.9%	19.3% 16.7%	35.7% 33.5%	35.7% 32.6%	36.7%	37.4%	40.9% 37.7%	38.8%	34.7%	35.1% 29.8%	32.9% 29.4%	33.1% 29.8%	33.1% 29.5%	42.8% 38.2%	43.4% 39.0%	43.7% 39.1%	45.1% 39.6%	44.0% 39.8%	42.2% 37.3%	42.6% 37.5%
18C	80.875 km	81.045 km	G	0.0%	0.0%	2.6%	14.4%	21.5%	19.2%	19.9%	14.8%	16.2%	17.4%	20.6%	18.8%	14.8%	15.5%	13.6%	14.1%	14.3%	24.4%	25.5%	26.0%	26.7%	27.6%	26.3%	27.1%
18C	80.875 km	81.045 km	A	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.9%	14.7%	20.6%	15.2%	13.5%	13.4%	13.2%	13.9%	13.8%	22.7%	23.9%	24.3%	24.1%	26.0%	23.9%	24.5%
18C 18C	81.045 km 81.045 km	81.255 km 81.255 km	G A	0.0%	0.0%	2.6%	14.4% 6.1%	21.5% 16.9%	19.2% 16.6%	19.9% 20.2%	14.8% 15.0%	16.2% 14.9%	17.4% 14.7%	20.6%	18.8% 15.2%	14.8% 13.5%	15.5% 13.4%	13.6% 13.2%	14.1% 13.9%	14.3% 13.8%	24.4% 22.7%	25.5% 23.9%	26.0% 24.3%	26.7% 24.1%	27.6% 26.0%	26.3% 23.9%	27.1% 24.5%
18C	81.255 km	81.505 km	Ĝ	0.0%	0.0%	2.1%	11.2%	16.8%	15.0%	15.6%	11.5%	12.7%	13.6%	16.5%	15.0%	12.5%	12.5%	11.0%	11.1%	11.6%	19.3%	20.0%	20.4%	21.2%	21.6%	20.5%	21.2%
18C	81.255 km	81.505 km	Α	0.0%	0.0%	0.3%	6.0%	16.6%	16.3%	19.9%	14.7%	14.6%	14.4%	21.8%	15.9%	16.7%	14.4%	14.5%	13.8%	15.0%	23.2%	23.7%	24.1%	25.2%	25.5%	23.4%	24.0%
18C 18C	81.505 km 81.505 km	81.755 km 81.755 km	G A	0.0% 0.0%	0.0%	2.1% 0.3%	11.2% 6.0%	16.8% 16.6%	15.0% 16.3%	15.6% 19.9%	11.5% 14.7%	12.7% 14.6%	13.6% 14.4%	16.5% 21.8%	15.0% 15.9%	12.5% 16.7%	12.5% 14.4%	11.0% 14.5%	11.1% 13.8%	11.6% 15.0%	19.3% 23.2%	20.0% 23.7%	20.4% 24.1%	21.2% 25.2%	21.6% 25.5%	20.5% 23.4%	21.2% 24.0%
18C	81.755 km	82.425 km	Ĝ	0.0%	0.0%	2.1%	11.2%	16.8%	15.0%	15.6%	11.5%	12.7%	13.6%	16.5%	15.0%	12.5%	12.5%	11.0%	11.1%	11.6%	19.3%	20.0%	20.4%	21.2%	21.6%	20.5%	21.2%
18C	81.755 km	82.425 km	A	0.0%	0.0%	0.3%	6.0%	16.6%	16.3%	19.9%	14.7%	14.6%	14.4%	21.8%	15.9%	16.7%	14.4%	14.5%	13.8%	15.0%	23.2%	23.7%	24.1%	25.2%	25.5%	23.4%	24.0%
18C 18C	82.425 km 82.425 km	82.775 km 82.775 km	G A	0.0%	0.0%	2.1% 0.3%	11.2% 6.0%	16.8% 16.6%	15.0% 16.3%	15.6% 19.9%	11.5% 14.7%	12.7% 14.6%	13.6% 14.4%	16.5% 21.8%	15.0% 15.9%	12.5% 16.7%	12.5% 14.4%	11.0% 14.5%	11.1% 13.8%	11.6% 15.0%	19.3% 23.2%	20.0% 23.7%	20.4% 24.1%	21.2% 25.2%	21.6% 25.5%	20.5% 23.4%	21.2% 24.0%
18C	82.775 km	83.155 km	Ĝ	0.0%	0.0%	2.1%	11.2%	16.8%	15.0%	15.6%	11.5%	12.7%	13.6%	16.5%	15.0%	12.5%	12.5%	11.0%	11.1%	11.6%	19.3%	20.0%	20.4%	21.2%	21.6%	20.5%	21.2%
18C	82.775 km	83.155 km	Α	0.0%	0.0%	0.3%	6.0%	16.6%	16.3%	19.9%	14.7%	14.6%	14.4%	21.8%	15.9%	16.7%	14.4%	14.5%	13.8%	15.0%	23.2%	23.7%	24.1%	25.2%	25.5%	23.4%	24.0%
18C 18C	83.155 km 83.155 km	87.525 km 87.525 km	G A	0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	16.0% 16.6%	16.5% 20.2%	12.2% 15.0%	13.5% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	17.8% 21.0%	18.4% 21.4%	18.7% 21.6%	19.4% 22.6%	19.3% 22.4%	18.4% 20.4%	18.9% 20.9%
18C	87.525 km	89.805 km	Ĝ	0.0%	0.0%	2.2%	11.9%	17.8%	16.0%	16.5%	12.2%	13.5%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	17.8%	18.4%	18.7%	19.4%	19.3%	18.4%	18.9%
18C	87.525 km	89.805 km	Α	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	21.0%	21.4%	21.6%	22.6%	22.4%	20.4%	20.9%
18C 18C	89.805 km 89.805 km	90.315 km 90.315 km	G	0.0% 0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	16.0% 16.6%	16.5% 20.2%	12.2% 15.0%	13.5% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	17.8% 21.0%	18.4% 21.4%	18.7% 21.6%	19.4% 22.6%	19.3% 22.4%	18.4% 20.4%	18.9% 20.9%
18C	90.315 km	90.335 km	Ğ	0.0%	0.0%	2.2%	11.9%	17.8%	16.0%	16.5%	12.2%	13.5%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	17.8%	18.4%	18.7%	19.4%	19.3%	18.4%	18.9%
18C	90.315 km	90.335 km	Α	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	21.0%	21.4%	21.6%	22.6%	22.4%	20.4%	20.9%
18C 18C	90.335 km 90.335 km	90.955 km 90.955 km	G A	0.0%	0.0%	2.2%	11.9% 6.1%	17.8% 16.9%	16.0% 16.6%	16.5% 20.2%	12.2% 15.0%	13.5% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	14.7% 18.3%	15.0% 18.5%	15.1% 18.5%	15.7% 19.3%	15.4% 18.9%	14.2% 16.7%	14.6% 17.0%
18C	90.335 km	91.665 km	Ğ	0.0%	0.0%	2.2%	11.9%	17.8%	16.0%	16.5%	12.2%	13.5%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	11.3%	11.1%	11.0%	11.4%	11.1%	9.8%	9.7%
18C	90.955 km	91.665 km	A	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	15.0%	14.6%	14.4%	15.0%	14.7%	12.3%	12.2%
18C 18C	91.665 km 91.665 km	95.015 km 95.015 km	G	0.0% 0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	16.0% 16.6%	16.5% 20.2%	12.2% 15.0%	13.5% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	11.3% 15.0%	11.1% 14.6%	11.0% 14.4%	11.4% 15.0%	11.1% 14.7%	9.8% 12.3%	9.7% 12.2%
18C	95.015 km	96.275 km	Ğ	0.0%	0.0%	2.2%	11.9%	17.8%	16.0%	16.5%	12.2%	13.5%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	11.3%	11.1%	11.0%	11.4%	11.1%	9.8%	9.7%
18C	95.015 km	96.275 km	Α	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	15.0%	14.6%	14.4%	15.0%	14.7%	12.3%	12.2%
18C 18C	96.275 km 96.275 km	97.355 km 97.355 km	G A	0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	16.0% 16.6%	16.5% 20.2%	12.2% 15.0%	13.5% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	11.3%	11.1% 14.6%	11.0% 14.4%	11.4% 15.0%	11.1% 14.7%	9.8% 12.3%	9.7% 12.2%
18C	96.275 km 97.355 km	97.355 km 97.425 km	G	0.0%	0.0%	2.2%	11.9%	17.8%	15.7%	16.5%	12.2%	13.4%	14.7%	17.5%	15.9%	13.3%	13.2%	14.7%	11.8%	12.3%	15.0% 11.3%	11.1%	10.9%	11.2%	10.9%	9.5%	9.3%
18C	97.355 km	97.425 km	Α	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	15.7%	15.3%	15.0%	15.5%	15.1%	12.7%	12.5%
18C 18C	97.425 km 97.425 km	97.575 km 97.575 km	G A	0.0% 0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	15.7% 16.6%	16.5% 20.2%	12.2% 15.0%	13.4% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	11.3% 15.7%	11.1% 15.3%	10.9% 15.0%	11.2% 15.5%	10.9% 15.1%	9.5% 12.7%	9.3% 12.5%
18C	97.425 km	98.965 km	G	0.0%	0.0%	2.2%	11.9%	17.8%	15.7%	16.5%	12.2%	13.4%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	11.3%	11.1%	10.0%	11.2%	10.1%	9.5%	9.3%
18C	97.575 km	98.965 km	A	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	15.7%	15.3%	15.0%	15.5%	15.1%	12.7%	12.5%
18C 18C	98.965 km 98.965 km	104.235 km 104.235 km	G A	0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	15.7% 16.6%	16.5% 20.2%	12.2% 15.0%	13.4% 14.8%	14.4% 14.7%	17.5% 22.1%	15.9% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.8% 14.0%	12.3% 15.2%	11.3% 15.7%	11.1% 15.3%	10.9% 15.0%	11.2% 15.5%	10.9% 15.1%	9.5% 12.7%	9.3% 12.5%
18C	104.235 km	104.435 km	Ğ	0.0%	0.0%	2.2%	11.9%	17.8%	15.7%	16.5%	12.2%	13.4%	14.7%	17.5%	15.9%	13.3%	13.2%	11.7%	11.8%	12.3%	11.3%	11.1%	10.9%	11.2%	10.9%	9.5%	9.3%
18C	104.235 km	104.435 km	Α	0.0%	0.0%	0.3%	6.1%	16.9%	16.6%	20.2%	15.0%	14.8%	14.7%	22.1%	16.2%	17.0%	14.6%	14.7%	14.0%	15.2%	15.7%	15.3%	15.0%	15.5%	15.1%	12.7%	12.5%
18C 18C	104.435 km 104.435 km	106.355 km 106.355 km	G A	0.0% 0.0%	0.0%	2.2% 0.3%	11.9% 6.1%	17.8% 16.9%	15.7% 16.5%	16.5% 20.2%	12.2% 15.0%	13.3% 14.8%	14.4% 14.6%	17.5% 22.1%	15.8% 16.2%	13.3% 17.0%	13.2% 14.6%	11.7% 14.7%	11.6% 13.9%	12.1% 15.2%	15.2% 20.4%	15.1% 20.1%	15.1% 20.0%	15.2% 20.3%	15.1% 20.1%	14.2% 18.1%	14.1% 18.0%
18C	106.355 km	108.855 km	Ĝ	0.0%	0.0%	2.1%	11.7%	17.5%	15.4%	16.2%	12.0%	13.1%	14.1%	17.2%	15.5%	13.0%	12.9%	11.5%	11.4%	11.9%	14.9%	14.9%	14.9%	15.0%	14.8%	13.9%	13.9%
18C	106.355 km	108.855 km	A	0.0%	0.0%	0.3%	6.1%	16.7%	16.4%	20.0%	14.8%	14.6%	14.5%	21.9%	16.0%	16.8%	14.5%	14.5%	13.8%	15.0%	20.2%	19.9%	19.8%	20.1%	19.9%	17.9%	17.8%
18C	108.855 km 108.855 km	109.405 km 109.405 km	G	0.0%	0.0%	2.1% 0.3%	11.7%	17.5%	15.4%	16.2%	12.0% 14.8%	13.1%	14.1%	17.2%	15.5% 16.0%	13.0%	12.9%	11.5% 14.5%	11.4% 13.8%	11.9%	14.9% 20.2%	14.9% 19.9%	14.9% 19.8%	15.0% 20.1%	14.8% 19.9%	13.9%	13.9%
18C 18C	109.405 km	109.445 km	Ğ	0.0% 0.0%	0.0%	2.1%	6.1% 11.7%	16.7% 17.5%	16.4% 15.4%	20.0% 16.2%	12.0%	14.6% 13.1%	14.5% 14.1%	21.9% 17.2%	15.5%	16.8% 13.0%	14.5% 12.9%	11.5%	11.4%	15.0% 11.9%	14.9%	14.9%	14.9%	15.0%	14.8%	17.9% 13.9%	17.8% 13.9%
18C	109.405 km	109.445 km	Α	0.0%	0.0%	0.3%	6.1%	16.7%	16.4%	20.0%	14.8%	14.6%	14.5%	21.9%	16.0%	16.8%	14.5%	14.5%	13.8%	15.0%	20.2%	19.9%	19.8%	20.1%	19.9%	17.9%	17.8%
18C 18C	109.445 km 109.445 km	109.815 km 109.815 km	G A	0.0% 0.0%	0.0%	2.1% 0.3%	11.7% 6.1%	17.5% 16.7%	15.4% 16.4%	16.2% 20.0%	12.0% 14.8%	13.1% 14.6%	14.1% 14.5%	17.2% 21.9%	15.5% 16.0%	13.0% 16.8%	12.9% 14.5%	11.5% 14.5%	11.4% 13.8%	11.9% 15.0%	14.9% 20.2%	14.9% 19.9%	14.9% 19.8%	15.0% 20.1%	14.8% 19.9%	13.9% 17.9%	13.9% 17.8%
18C	109.445 km	110.045 km	Ğ	0.0%	0.0%	2.1%	11.7%	17.5%	15.4%	16.2%	12.0%	13.1%	14.1%	17.2%	15.5%	13.0%	12.9%	11.5%	11.4%	11.9%	14.9%	14.9%	14.9%	15.0%	14.8%	13.9%	13.9%
18C	109.815 km	110.045 km	Α	0.0%	0.0%	0.3%	6.1%	16.7%	16.4%	20.0%	14.8%	14.6%	14.5%	21.9%	16.0%	16.8%	14.5%	14.5%	13.8%	15.0%	20.2%	19.9%	19.8%	20.1%	19.9%	17.9%	17.8%
18C	110.045 km	110.105 km	G	0.0%	0.0%	2.1%	11.7%	17.5%	15.4%	16.2%	12.0%	13.1%	14.1%	17.2%	15.5%	13.0%	12.9%	11.5%	11.4%	11.9%	14.9%	14.9%	14.9%	15.0%	14.8%	13.9%	13.9%
18C 18C	110.045 km 110.105 km	110.105 km 111.465 km	A G	0.0%	0.0%	0.3% 2.1%	6.1% 11.7%	16.7% 17.5%	16.4% 15.4%	20.0% 16.2%	14.8% 12.0%	14.6% 13.1%	14.5% 14.1%	21.9% 17.2%	16.0% 15.5%	16.8% 13.0%	14.5% 12.9%	14.5% 11.5%	13.8% 11.4%	15.0% 11.9%	20.2% 14.9%	19.9% 14.9%	19.8% 14.9%	20.1% 15.0%	19.9% 14.8%	17.9% 13.9%	17.8% 13.9%
18C	110.105 km	111.465 km	A	0.0%	0.0%	0.3%	6.1%	16.7%	16.4%	20.0%	14.8%	14.6%	14.5%	21.9%	16.0%	16.8%	14.5%	14.5%	13.8%	15.0%	20.2%	19.9%	19.8%	20.1%	19.9%	17.9%	17.8%
18C	111.465 km	112.375 km	G	0.0%	0.0%	2.1%	11.7%	17.5%	15.4%	16.2%	12.0%	13.1%	14.1%	17.2%	15.5%	13.0%	12.9%	11.5%	11.4%	11.9%	14.9%	14.9%	14.9%	15.0%	14.8%	13.9%	13.9%
18C 18C	111.465 km 112.375 km	112.375 km 112.735 km	A G	0.0% 0.0%	0.0%	0.3% 2.1%	6.1% 11.7%	16.7% 17.5%	16.4% 15.4%	20.0% 16.2%	14.8% 12.0%	14.6% 13.1%	14.5% 14.1%	21.9% 17.2%	16.0% 15.5%	16.8% 13.0%	14.5% 12.9%	14.5% 11.5%	13.8% 11.4%	15.0% 11.9%	20.2% 14.9%	19.9% 14.9%	19.8% 14.9%	20.1% 15.0%	19.9% 14.8%	17.9% 13.9%	17.8% 13.9%
18C	112.375 km	112.735 km	A	0.0%	0.0%	0.3%	6.1%	16.7%	16.4%	20.0%	14.8%	14.6%	14.5%	21.9%	16.0%	16.8%	14.5%	14.5%	13.8%	15.0%	20.2%	19.9%	19.8%	20.1%	19.9%	17.9%	17.8%
18C	112.735 km	113.585 km	G	0.0%	0.0%	2.1%	11.7%	17.4%	15.4%	16.1%	12.0%	13.1%	14.1%	17.2%	15.6%	13.1%	13.1%	11.6%	11.7%	12.4%	15.2%	15.1%	15.2%	15.2%	15.0%	14.3%	14.2%
18C 18C	112.735 km 113.585 km	113.585 km 115.465 km	A G	0.0%	0.0%	0.3%	6.1% 11.7%	16.7% 17.4%	16.5% 15.4%	20.0% 16.1%	14.8% 12.0%	14.8% 13.1%	14.6% 14.1%	22.0% 17.2%	16.5% 15.6%	16.9% 13.1%	14.8% 13.1%	14.7% 11.6%	14.4% 11.7%	15.9% 12.4%	20.4% 15.2%	20.2% 15.1%	20.1% 15.2%	20.3% 15.2%	20.1% 15.0%	18.2% 14.3%	18.0% 14.2%
18C	113.585 km	115.465 km	Ä	0.0%	0.0%	0.3%	6.1%	16.7%	16.5%	20.0%	14.8%	14.8%	14.6%	22.0%	16.5%	16.9%	14.8%	14.7%	14.4%	15.9%	20.4%	20.2%	20.1%	20.3%	20.1%	18.2%	18.0%
18C	115.465 km	116.065 km	G	0.0%	0.0%	2.1%	11.7%	17.4%	15.4%	16.1%	12.0%	13.1%	14.1%	17.2%	15.6%	13.1%	13.1%	11.6%	11.7%	12.4%	15.2%	15.1%	15.2%	15.2%	15.0%	14.3%	14.2%
18C	115.465 km	116.065 km	Α	0.0%	0.0%	0.3%	6.1%	16.7%	16.5%	20.0%	14.8%	14.8%	14.6%	22.0%	16.5%	16.9%	14.8%	14.7%	14.4%	15.9%	20.4%	20.2%	20.1%	20.3%	20.1%	18.2%	18.0%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

ROAD	Start	End	Direction	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
3251 3251	45.090 km 45.090 km	45.320 km 45.320 km	G A	1172.8% 910.9%	1036.0% 764.4%	964.5% 719.7%	875.0% 673.1%	831.0% 641.1%	774.2% 593.6%	726.2% 556.2%	704.9% 531.1%	688.6% 518.5%	672.7% 506.1%	711.1% 538.4%	587.5% 437.1%	693.6% 498.8%	518.5% 326.7%	402.9% 282.7%	386.3% 269.6%	369.9% 256.7%	353.7% 244.1%	340.8% 234.0%	325.1% 227.4%	509.5% 400.9%	88.1% 27.2%	0.0%	0.0%	0.0%
3251	45.320 km	45.610 km	G	456.0%	481.8%	425.3%	354.4%	318.0%	261.7%	211.9%	194.6%	172.0%	155.4%	147.0%	140.7%	174.2%	264.0%	179.1%	165.5%	152.1%	138.9%	128.9%	115.8%	85.0%	63.4%	0.0%	0.0%	0.0%
3251 18C	45.320 km 80.175 km	45.610 km 80.365 km	A G	319.0% 44.0%	306.9% 41.7%	274.5% 41.3%	243.2% 41.0%	217.5% 38.9%	170.4% 29.3%	131.6% 26.8%	109.8% 25.6%	91.9% 24.7%	79.0% 23.6%	72.7% 22.2%	68.3% 21.9%	70.0% 24.3%	116.5% 6.7%	97.8%	87.3% 4.6%	76.9% 4.4%	66.7% 4.1%	59.0% 3.9%	54.7% 3.7%	50.3% 3.2%	6.8%	0.0%	0.0%	0.0%
18C	80.175 km	80.365 km	A	38.0%	36.6%	36.3%	36.1%	34.4%	26.9%	24.9%	24.1%	23.1%	22.1%	21.1%	20.5%	22.9%	8.1%	6.5%	6.2%	6.0%	5.8%	5.5%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	80.365 km 80.365 km	80.485 km 80.485 km	G	44.0% 38.0%	41.7% 36.6%	41.3% 36.3%	41.0% 36.1%	38.9% 34.4%	29.3% 26.9%	26.8% 24.9%	25.6% 24.1%	24.7% 23.1%	23.6% 22.1%	22.2% 21.1%	21.9% 20.5%	24.3% 22.9%	6.7% 8.1%	4.9% 6.5%	4.6% 6.2%	4.4% 6.0%	4.1% 5.8%	3.9% 5.5%	3.7% 5.4%	3.2% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	80.485 km	80.615 km	G	44.0%	41.7%	41.3%	41.0%	38.9%	29.3%	26.8%	25.6%	24.7%	23.6%	22.2%	21.9%	24.3%	6.7%	4.9%	4.6%	4.4%	4.1%	3.9%	3.7%	3.2%	0.0%	0.0%	0.0%	0.0%
18C 18C	80.485 km 80.615 km	80.615 km 80.645 km	A G	38.0% 45.3%	36.6% 42.7%	36.3% 42.7%	36.1% 41.6%	34.4% 39.5%	26.9% 29.6%	24.9% 27.3%	24.1% 25.9%	23.1% 24.8%	22.1% 23.7%	21.1% 22.5%	20.5% 21.9%	22.9% 24.3%	8.1% 6.7%	6.5% 4.9%	6.2% 4.6%	6.0% 4.4%	5.8% 4.1%	5.5% 3.9%	5.4% 3.7%	2.4% 3.2%	0.0%	0.0%	0.0%	0.0%
18C	80.615 km	80.645 km	A	45.3% 39.1%	42.7% 37.4%	42.7% 37.5%	36.6%	39.5%	29.6%	25.3%	25.9%	24.8%	23.7%	22.5%	20.5%	24.3%	8.1%	6.5%	6.2%	6.0%	5.8%	5.5%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C	80.645 km	80.705 km	G	45.3%	42.7%	42.7%	41.6%	39.5%	29.6%	27.3%	25.9%	24.8%	23.7%	22.5%	21.9%	24.3%	6.7%	4.9%	4.6%	4.4%	4.1%	3.9%	3.7%	3.2%	0.0%	0.0%	0.0%	0.0%
18C 18C	80.645 km 80.705 km	80.705 km 80.875 km	A G	39.1% 45.3%	37.4% 42.7%	37.5% 42.7%	36.6% 41.6%	34.9% 39.5%	27.2% 29.6%	25.3% 27.3%	24.3% 25.9%	23.3% 24.8%	22.3% 23.7%	21.4% 22.5%	20.5% 21.9%	22.9% 24.3%	8.1% 6.7%	6.5% 4.9%	6.2% 4.6%	6.0% 4.4%	5.8% 4.1%	5.5% 3.9%	5.4% 3.7%	2.4% 3.2%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
18C	80.705 km	80.875 km	A	39.1%	37.4%	37.5%	36.6%	34.9%	27.2%	25.3%	24.3%	23.3%	22.3%	21.4%	20.5%	22.9%	8.1%	6.5%	6.2%	6.0%	5.8%	5.5%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	80.875 km 80.875 km	81.045 km 81.045 km	G A	28.5% 25.0%	28.2% 25.3%	28.4% 25.5%	28.5% 25.6%	26.7% 24.2%	17.2% 16.8%	14.9% 15.0%	14.4% 14.7%	13.6% 13.8%	12.6% 12.9%	11.4% 12.0%	10.9% 11.2%	9.4% 10.4%	6.4% 7.8%	6.0% 7.4%	5.5% 7.0%	5.1% 6.7%	4.8% 6.3%	4.3% 5.9%	3.8% 5.5%	3.2% 2.4%	0.0%	0.0% 0.0%	0.0%	0.0%
18C	81.045 km	81.255 km	G	28.5%	28.2%	28.4%	28.5%	26.7%	17.2%	14.9%	14.4%	13.6%	12.6%	11.4%	10.9%	9.4%	6.4%	6.0%	5.5%	5.1%	4.8%	4.3%	3.8%	3.2%	0.0%	0.0%	0.0%	0.0%
18C 18C	81.045 km 81.255 km	81.255 km 81.505 km	A G	25.0% 22.3%	25.3% 22.2%	25.5% 22.7%	25.6% 22.6%	24.2% 21.2%	16.8% 13.4%	15.0% 12.0%	14.7% 11.5%	13.8% 10.7%	12.9% 9.9%	12.0% 9.3%	11.2% 8.5%	10.4% 7.3%	7.8% 5.0%	7.4% 4.7%	7.0% 4.3%	6.7% 4.0%	6.3% 3.7%	5.9% 3.4%	5.5%	2.4% 2.5%	0.0%	0.0%	0.0%	0.0%
18C	81.255 km	81.505 km	A	24.5%	24.8%	25.1%	25.2%	23.8%	16.5%	14.7%	14.4%	13.5%	12.7%	11.9%	11.0%	10.2%	7.7%	7.3%	6.9%	6.5%	6.2%	5.8%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	81.505 km 81.505 km	81.755 km 81.755 km	G A	22.3% 24.5%	22.2% 24.8%	22.7% 25.1%	22.6% 25.2%	21.2% 23.8%	13.4% 16.5%	12.0% 14.7%	11.5% 14.4%	10.7% 13.5%	9.9% 12.7%	9.3% 11.9%	8.5% 11.0%	7.3% 10.2%	5.0% 7.7%	4.7% 7.3%	4.3% 6.9%	4.0% 6.5%	3.7% 6.2%	3.4% 5.8%	3.0% 5.4%	2.5% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	81.755 km	82.425 km	G	22.3%	22.2%	22.7%	22.6%	21.2%	13.4%	12.0%	11.5%	10.7%	9.9%	9.3%	8.5%	7.3%	5.0%	4.7%	4.3%	4.0%	3.7%	3.4%	3.0%	2.5%	0.0%	0.0%	0.0%	0.0%
18C 18C	81.755 km 82.425 km	82.425 km 82.775 km	A G	24.5% 22.3%	24.8% 22.2%	25.1% 22.7%	25.2% 22.6%	23.8% 21.2%	16.5% 13.4%	14.7% 12.0%	14.4% 11.5%	13.5% 10.7%	12.7% 9.9%	11.9% 9.3%	11.0% 8.5%	10.2% 7.3%	7.7% 5.0%	7.3% 4.7%	6.9% 4.3%	6.5% 4.0%	6.2% 3.7%	5.8% 3.4%	5.4%	2.4% 2.5%	0.0%	0.0% 0.0%	0.0%	0.0%
18C	82.425 km	82.775 km	A	24.5%	24.8%	25.1%	25.2%	23.8%	16.5%	14.7%	14.4%	13.5%	12.7%	11.9%	11.0%	10.2%	7.7%	7.3%	6.9%	6.5%	6.2%	5.8%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	82.775 km 82.775 km	83.155 km 83.155 km	G A	22.3% 24.5%	22.2% 24.8%	22.7% 25.1%	22.6% 25.2%	21.2% 23.8%	13.4% 16.5%	12.0% 14.7%	11.5% 14.4%	10.7% 13.5%	9.9% 12.7%	9.3% 11.9%	8.5% 11.0%	7.3% 10.2%	5.0% 7.7%	4.7% 7.3%	4.3% 6.9%	4.0% 6.5%	3.7% 6.2%	3.4% 5.8%	3.0% 5.4%	2.5%	0.0%	0.0%	0.0%	0.0%
18C	83.155 km	87.525 km	Ĝ	19.9%	19.8%	19.9%	20.1%	19.2%	11.6%	10.7%	10.2%	9.5%	8.9%	8.5%	7.8%	6.8%	5.2%	4.9%	4.5%	4.2%	3.9%	3.5%	3.1%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	83.155 km 87.525 km	87.525 km 89.805 km	A G	21.3% 19.9%	21.5% 19.8%	21.4% 19.9%	21.7% 20.1%	20.8% 19.2%	14.1% 11.6%	12.8% 10.7%	12.6% 10.2%	11.9% 9.5%	11.2% 8.9%	10.6% 8.5%	10.0% 7.8%	9.3% 6.8%	7.7% 5.2%	7.3% 4.9%	6.9% 4.5%	6.5% 4.2%	6.2% 3.9%	5.8% 3.5%	5.4% 3.1%	2.4%	0.0%	0.0%	0.0%	0.0%
18C	87.525 km	89.805 km	A	21.3%	21.5%	21.4%	21.7%	20.8%	14.1%	12.8%	12.6%	11.9%	11.2%	10.6%	10.0%	9.3%	7.7%	7.3%	6.9%	6.5%	6.2%	5.8%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	89.805 km	90.315 km	G	19.9% 21.3%	19.8%	19.9% 21.4%	20.1% 21.7%	19.2% 20.8%	11.6% 14.1%	10.7% 12.8%	10.2%	9.5%	8.9%	8.5%	7.8%	6.8%	5.2% 7.7%	4.9%	4.5% 6.9%	4.2%	3.9%	3.5% 5.8%	3.1% 5.4%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	89.805 km 90.315 km	90.315 km 90.335 km	G	19.9%	21.5% 19.8%	19.9%	20.1%	19.2%	11.6%	12.8%	12.6% 10.2%	11.9% 9.5%	11.2% 8.9%	10.6% 8.5%	10.0% 7.8%	9.3% 6.8%	5.2%	7.3% 4.9%	4.5%	6.5% 4.2%	6.2% 3.9%	3.5%	3.1%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	90.315 km	90.335 km	A	21.3%	21.5%	21.4%	21.7%	20.8%	14.1%	12.8%	12.6%	11.9%	11.2%	10.6%	10.0%	9.3%	7.7%	7.3%	6.9%	6.5%	6.2%	5.8%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	90.335 km 90.335 km	90.955 km 90.955 km	G A	15.5% 17.2%	15.1% 17.2%	15.1% 17.0%	15.2% 17.2%	14.6% 16.5%	8.5% 11.0%	8.0% 10.2%	7.8% 10.1%	7.4% 9.7%	7.0% 9.2%	6.9% 8.8%	6.4% 8.4%	5.6% 8.0%	6.0% 8.3%	5.5% 7.8%	5.0% 7.3%	4.5% 6.7%	4.1% 6.3%	3.6% 5.8%	3.2% 5.4%	2.6% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	90.955 km	91.665 km	G	10.4%	9.9%	10.0%	9.7%	9.4%	5.1%	5.2%	5.1%	5.0%	4.9%	5.0%	4.8%	4.2%	5.7%	5.3%	4.8%	4.4%	3.9%	3.5%	3.1%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	90.955 km 91.665 km	91.665 km 95.015 km	A G	12.2% 10.4%	12.0% 9.9%	11.9% 10.0%	11.6% 9.7%	11.3% 9.4%	7.6% 5.1%	7.3% 5.2%	7.4% 5.1%	7.2% 5.0%	7.0% 4.9%	6.9% 5.0%	6.7% 4.8%	6.5% 4.2%	8.1% 5.7%	7.6% 5.3%	7.1% 4.8%	6.6% 4.4%	6.1% 3.9%	5.7% 3.5%	5.4% 3.1%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	91.665 km	95.015 km	A	12.2%	12.0%	11.9%	11.6%	11.3%	7.6%	7.3%	7.4%	7.2%	7.0%	6.9%	6.7%	6.5%	8.1%	7.6%	7.1%	6.6%	6.1%	5.7%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	95.015 km 95.015 km	96.275 km 96.275 km	G A	10.4% 12.2%	9.9% 12.0%	10.0% 11.9%	9.7% 11.6%	9.4% 11.3%	5.1% 7.6%	5.2% 7.3%	5.1% 7.4%	5.0% 7.2%	4.9% 7.0%	5.0% 6.9%	4.8% 6.7%	4.2% 6.5%	5.7% 8.1%	5.3% 7.6%	4.8% 7.1%	4.4% 6.6%	3.9% 6.1%	3.5% 5.7%	3.1% 5.4%	2.6% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	96.275 km	97.355 km	G	10.4%	9.9%	10.0%	9.7%	9.4%	5.1%	5.2%	5.1%	5.0%	4.9%	5.0%	4.8%	4.2%	5.7%	5.3%	4.8%	4.4%	3.9%	3.5%	3.1%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	96.275 km 97.355 km	97.355 km 97.425 km	A G	12.2% 10.0%	12.0% 9.4%	11.9% 9.4%	11.6% 9.0%	11.3% 8.7%	7.6% 4.4%	7.3% 4.4%	7.4% 4.5%	7.2% 4.4%	7.0% 4.4%	6.9% 4.5%	6.7% 4.4%	6.5% 3.8%	8.1% 6.4%	7.6% 5.8%	7.1% 5.2%	6.6% 4.7%	6.1% 4.1%	5.7% 3.6%	5.4% 3.2%	2.4% 2.6%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
18C	97.355 km	97.425 km	A	12.4%	12.1%	11.9%	11.6%	11.1%	6.9%	6.5%	6.4%	6.3%	6.2%	6.2%	6.1%	5.9%	8.5%	7.9%	7.2%	6.6%	6.1%	5.6%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	97.425 km 97.425 km	97.575 km 97.575 km	G A	10.0% 12.4%	9.4% 12.1%	9.4% 11.9%	9.0% 11.6%	8.7% 11.1%	4.4% 6.9%	4.4% 6.5%	4.5% 6.4%	4.4% 6.3%	4.4% 6.2%	4.5% 6.2%	4.4% 6.1%	3.8% 5.9%	6.4% 8.5%	5.8% 7.9%	5.2% 7.2%	4.7% 6.6%	4.1% 6.1%	3.6% 5.6%	3.2% 5.4%	2.6% 2.4%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%
18C	97.575 km	98.965 km	G	10.0%	9.4%	9.4%	9.0%	8.7%	4.4%	4.4%	4.5%	4.4%	4.4%	4.5%	4.4%	3.8%	6.4%	5.8%	5.2%	4.7%	4.1%	3.6%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	97.575 km 98.965 km	98.965 km 104.235 km	A G	12.4% 10.0%	12.1% 9.4%	11.9% 9.4%	11.6% 9.0%	11.1% 8.7%	6.9% 4.4%	6.5% 4.4%	6.4% 4.5%	6.3% 4.4%	6.2% 4.4%	6.2% 4.5%	6.1% 4.4%	5.9% 3.8%	8.5% 6.4%	7.9% 5.8%	7.2% 5.2%	6.6% 4.7%	6.1% 4.1%	5.6% 3.6%	5.4% 3.2%	2.4% 2.6%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
18C	98.965 km	104.235 km	Ā	12.4%	12.1%	11.9%	11.6%	11.1%	6.9%	6.5%	6.4%	6.3%	6.2%	6.2%	6.1%	5.9%	8.5%	7.9%	7.2%	6.6%	6.1%	5.6%	5.4%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	104.235 km 104.235 km	104.435 km 104.435 km	G A	10.0% 12.4%	9.4% 12.1%	9.4% 11.9%	9.0% 11.6%	8.7% 11.1%	4.4% 6.9%	4.4% 6.5%	4.5% 6.4%	4.4% 6.3%	4.4% 6.2%	4.5% 6.2%	4.4% 6.1%	3.8% 5.9%	6.4% 8.5%	5.8% 7.9%	5.2% 7.2%	4.7% 6.6%	4.1% 6.1%	3.6% 5.6%	3.2% 5.4%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	104.435 km	106.355 km	Ğ	14.9%	14.2%	14.3%	14.4%	13.6%	7.4%	6.9%	7.1%	6.8%	6.5%	6.4%	6.1%	5.3%	7.7%	6.9%	6.1%	5.4%	4.6%	3.9%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	104.435 km 106.355 km	106.355 km 108.855 km	A G	18.0% 14.7%	17.6% 14.0%	17.5% 14.1%	17.7% 14.1%	16.6% 13.4%	10.1% 7.2%	9.0% 6.7%	8.7% 6.9%	8.4% 6.6%	8.1% 6.4%	7.8% 6.3%	7.5% 6.0%	7.1% 5.2%	9.5% 7.6%	8.7% 6.8%	7.8% 6.0%	7.1% 5.3%	6.3% 4.6%	5.7% 3.8%	5.4%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	106.355 km	108.855 km	A	17.9%	17.5%	17.3%	17.5%	16.4%	10.0%	8.9%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	108.855 km 108.855 km	109.405 km 109.405 km	G	14.7% 17.9%	14.0% 17.5%	14.1% 17.3%	14.1% 17.5%	13.4% 16.4%	7.2% 10.0%	6.7% 8.9%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	2.6% 2.4%	0.0%	0.0% 0.0%	0.0%	0.0%
18C	109.405 km	109.445 km	G	14.7%	14.0%	14.1%	14.1%	13.4%	7.2%	6.7%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	109.405 km 109.445 km	109.445 km 109.815 km	A G	17.9% 14.7%	17.5% 14.0%	17.3% 14.1%	17.5% 14.1%	16.4% 13.4%	10.0% 7.2%	8.9% 6.7%	8.6% 6.9%	8.3% 6.6%	8.0% 6.4%	7.7% 6.3%	7.4% 6.0%	7.1% 5.2%	9.4% 7.6%	8.6% 6.8%	7.8% 6.0%	7.0% 5.3%	6.3% 4.6%	5.6% 3.8%	5.3% 3.2%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	109.445 km	109.815 km	A	17.9%	17.5%	17.3%	17.5%	16.4%	10.0%	8.9%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	109.815 km	110.045 km	G	14.7%	14.0%	14.1%	14.1%	13.4%	7.2%	6.7%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	109.815 km 110.045 km	110.045 km 110.105 km	A G	17.9% 14.7%	17.5% 14.0%	17.3% 14.1%	17.5% 14.1%	16.4% 13.4%	10.0% 7.2%	8.9% 6.7%	8.6% 6.9%	8.3% 6.6%	8.0% 6.4%	7.7% 6.3%	7.4% 6.0%	7.1% 5.2%	9.4% 7.6%	8.6% 6.8%	7.8% 6.0%	7.0% 5.3%	6.3% 4.6%	5.6% 3.8%	5.3% 3.2%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	110.045 km	110.105 km	A	17.9%	17.5%	17.3%	17.5%	16.4%	10.0%	8.9%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	110.105 km 110.105 km	111.465 km 111.465 km	G A	14.7% 17.9%	14.0% 17.5%	14.1% 17.3%	14.1% 17.5%	13.4% 16.4%	7.2% 10.0%	6.7% 8.9%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	2.6% 2.4%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
18C	111.465 km	112.375 km	G	14.7%	14.0%	14.1%	14.1%	13.4%	7.2%	6.7%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	111.465 km 112.375 km	112.375 km 112.735 km	A G	17.9% 14.7%	17.5% 14.0%	17.3% 14.1%	17.5% 14.1%	16.4% 13.4%	10.0% 7.2%	8.9% 6.7%	8.6% 6.9%	8.3% 6.6%	8.0% 6.4%	7.7% 6.3%	7.4% 6.0%	7.1% 5.2%	9.4% 7.6%	8.6% 6.8%	7.8% 6.0%	7.0% 5.3%	6.3% 4.6%	5.6% 3.8%	5.3% 3.2%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	112.375 km	112.735 km	A	17.9%	17.5%	17.3%	17.5%	16.4%	10.0%	8.9%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	112.735 km 112.735 km	113.585 km 113.585 km	G A	14.8% 18.0%	14.4% 17.8%	14.2% 17.4%	14.4% 17.7%	13.5% 16.5%	7.7% 10.2%	7.3% 9.2%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	2.6% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	113.585 km	115.465 km	G	14.8%	14.4%	14.2%	14.4%	13.5%	7.7%	7.3%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	113.585 km 115.465 km	115.465 km 116.065 km	A G	18.0% 14.8%	17.8% 14.4%	17.4% 14.2%	17.7% 14.4%	16.5% 13.5%	10.2% 7.7%	9.2% 7.3%	8.6% 6.9%	8.3% 6.6%	8.0% 6.4%	7.7% 6.3%	7.4% 6.0%	7.1% 5.2%	9.4% 7.6%	8.6% 6.8%	7.8% 6.0%	7.0% 5.3%	6.3% 4.6%	5.6% 3.8%	5.3% 3.2%	2.4% 2.6%	0.0%	0.0%	0.0%	0.0%
18C	115.465 km	116.065 km	A	18.0%	17.8%	17.4%	17.7%	16.5%	10.2%	9.2%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

ROAD	Start	End	Direction	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
18C	116.065 km	118.625 km	G	0.0%	0.0%	2.1%	11.7%	17.4%	15.4%	16.1%	12.0%	13.1%	14.1%	17.3%	15.7%	13.2%	13.5%	11.9%	12.3%	12.8%	15.6%	15.5%	15.6%	15.6%	15.5%	14.7%	14.6%
18C	116.065 km	118.625 km	Α	0.0%	0.0%	0.3%	6.1%	16.7%	16.5%	20.0%	14.8%	14.8%	14.6%	22.3%	16.5%	17.2%	16.3%	15.4%	16.0%	16.6%	20.9%	20.6%	20.5%	20.7%	20.5%	18.6%	18.4%
18C	118.625 km	120.505 km	G	0.0%	0.0%	2.1%	11.7%	17.4%	15.4%	16.1%	12.0%	13.1%	14.1%	17.3%	15.7%	13.2%	13.5%	11.9%	12.3%	12.8%	15.6%	15.5%	15.6%	15.6%	15.5%	14.7%	14.6%
18C 18C	118.625 km 120.505 km	120.505 km 121.765 km	A G	0.0%	0.0%	0.3% 2.1%	6.1% 11.7%	16.7% 17.4%	16.5% 15.4%	20.0% 16.1%	14.8% 12.0%	14.8% 13.1%	14.6% 14.1%	22.3% 17.3%	16.5% 15.7%	17.2% 13.2%	16.3% 13.5%	15.4% 11.9%	16.0% 12.3%	16.6% 12.8%	20.9% 15.6%	20.6% 15.5%	20.5% 15.6%	20.7% 15.6%	20.5% 15.5%	18.6% 14.7%	18.4% 14.6%
18C	120.505 km	121.765 km	Ā	0.0%	0.0%	0.3%	6.1%	16.7%	16.5%	20.0%	14.8%	14.8%	14.6%	22.3%	16.5%	17.2%	16.3%	15.4%	16.0%	16.6%	20.9%	20.6%	20.5%	20.7%	20.5%	18.6%	18.4%
18C	121.765 km	122.285 km	G	0.0%	0.0%	2.1%	11.7%	17.4%	15.4%	16.1%	12.0%	13.1%	14.1%	17.3%	15.7%	13.2%	13.5%	11.9%	12.3%	12.8%	15.6%	15.5%	15.6%	15.6%	15.5%	14.7%	14.6%
18C	121.765 km	122.285 km	A	0.0%	0.0%	0.3%	6.1%	16.7%	16.5%	20.0%	14.8%	14.8%	14.6%	22.3%	16.5%	17.2%	16.3%	15.4%	16.0%	16.6%	20.9%	20.6%	20.5%	20.7%	20.5%	18.6%	18.4%
18C 18C	122.285 km 122.285 km	125.535 km 125.535 km	G A	0.0% 0.0%	0.0%	2.1% 0.3%	11.7% 6.1%	17.4% 16.7%	15.4% 16.5%	16.1% 20.0%	12.0% 14.8%	13.1% 14.8%	14.1% 14.6%	17.3% 22.3%	15.7% 16.5%	13.2% 17.2%	13.5% 16.3%	11.9% 15.4%	12.3% 16.0%	12.8% 16.6%	15.6% 20.9%	15.5% 20.6%	15.6% 20.5%	15.6% 20.7%	15.5% 20.5%	14.7% 18.6%	14.6% 18.4%
18C	125.535 km	125.795 km	G	0.0%	0.0%	2.1%	11.7%	17.7%	15.7%	16.5%	12.3%	13.5%	14.6%	17.6%	16.2%	13.6%	13.8%	12.3%	12.6%	13.2%	16.0%	16.6%	16.4%	16.1%	15.6%	15.3%	15.0%
18C	125.535 km	125.795 km	Ā	0.0%	0.0%	0.3%	6.2%	17.6%	17.4%	20.6%	15.1%	15.7%	15.4%	22.9%	17.3%	17.6%	16.7%	15.8%	16.3%	17.0%	21.3%	21.3%	21.0%	21.0%	20.6%	18.9%	18.7%
18C	125.795 km	125.895 km	G	0.0%	0.0%	2.1%	11.7%	17.7%	15.7%	16.5%	12.3%	13.5%	14.6%	17.6%	16.2%	13.6%	13.8%	12.3%	12.6%	13.2%	16.0%	16.6%	16.4%	16.1%	15.6%	15.3%	15.0%
18C 18C	125.795 km 125.895 km	125.895 km 125.945 km	A G	0.0% 0.0%	0.0%	0.3% 2.1%	6.2% 11.7%	17.6% 17.7%	17.4% 15.7%	20.6% 16.5%	15.1% 12.3%	15.7% 13.5%	15.4% 14.6%	22.9% 17.6%	17.3% 16.2%	17.6% 13.6%	16.7% 13.8%	15.8% 12.3%	16.3% 12.6%	17.0% 13.2%	21.3% 16.0%	21.3% 16.6%	21.0% 16.4%	21.0% 16.1%	20.6% 15.6%	18.9% 15.3%	18.7% 15.0%
18C	125.895 km	125.945 km	A	0.0%	0.0%	0.3%	6.2%	17.6%	17.4%	20.6%	15.1%	15.7%	15.4%	22.9%	17.3%	17.6%	16.7%	15.8%	16.3%	17.0%	21.3%	21.3%	21.0%	21.0%	20.6%	18.9%	18.7%
18C	125.945 km	126.005 km	G	0.0%	0.0%	2.1%	11.7%	17.7%	15.7%	16.5%	12.3%	13.5%	14.6%	17.6%	16.2%	13.6%	13.8%	12.3%	12.6%	13.2%	16.0%	16.6%	16.4%	16.1%	15.6%	15.3%	15.0%
18C	125.945 km	126.005 km	Α	0.0%	0.0%	0.3%	6.2%	17.6%	17.4%	20.6%	15.1%	15.7%	15.4%	22.9%	17.3%	17.6%	16.7%	15.8%	16.3%	17.0%	21.3%	21.3%	21.0%	21.0%	20.6%	18.9%	18.7%
18C 18C	126.005 km 126.005 km	126.235 km 126.235 km	G	0.0% 0.0%	0.0%	2.1% 0.3%	11.7% 6.2%	17.7% 17.6%	15.7% 17.4%	16.5% 20.6%	12.3% 15.1%	13.5% 15.7%	14.6% 15.4%	17.6% 22.9%	16.2% 17.3%	13.6% 17.6%	13.8% 16.7%	12.3% 15.8%	12.6% 16.3%	13.2% 17.0%	16.0% 21.3%	16.6% 21.3%	16.4% 21.0%	16.1% 21.0%	15.6% 20.6%	15.3% 18.9%	15.0% 18.7%
18C	126.005 km	126.235 km	A G	0.0%	0.0%	2.1%	11.7%	17.6%	15.7%	16.5%	12.3%	13.5%	15.4%	22.9% 17.6%	16.2%	17.6%	13.8%	12.3%	12.6%	17.0%	16.0%	16.6%	16.4%	16.1%	15.6%	15.3%	15.0%
18C	126.235 km	126.475 km	Ä	0.0%	0.0%	0.3%	6.2%	17.6%	17.4%	20.6%	15.1%	15.7%	15.4%	22.9%	17.3%	17.6%	16.7%	15.8%	16.3%	17.0%	21.3%	21.3%	21.0%	21.0%	20.6%	18.9%	18.7%
18C	126.475 km	126.745 km	G	0.0%	0.0%	4.4%	28.1%	37.9%	35.5%	36.6%	31.7%	31.8%	33.1%	34.3%	33.3%	30.1%	28.7%	27.6%	26.4%	26.6%	29.7%	29.8%	28.9%	28.2%	26.8%	26.6%	26.8%
18C	126.475 km	126.745 km	A	0.0%	0.0%	0.9%	21.1%	38.3%	37.7%	41.2%	35.0%	34.4%	34.4%	40.0%	34.9%	34.5%	31.9%	31.5%	30.4%	30.8%	36.3%	37.9%	37.4%	36.0%	33.0%	31.9%	32.8%
35A 35A	0.000 km 0.000 km	0.130 km 0.130 km	G A	0.0% 0.0%	0.0%	4.9% 3.8%	0.7%	10.7% 3.3%	14.2% 4.8%	16.6% 5.3%	28.1% 8.8%	20.6% 7.3%	25.8% 8.8%	11.5% 5.3%	10.0% 5.0%	7.8% 4.4%	8.8% 4.9%	6.0% 4.2%	8.3% 4.8%	6.9% 4.7%	6.2% 4.6%	10.8% 9.5%	11.7% 10.3%	4.3% 7.5%	5.2% 13.3%	6.0% 12.2%	5.0% 11.9%
35A	0.130 km	0.240 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	0.130 km	0.240 km	Α	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	0.240 km	0.350 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A 35A	0.240 km 0.350 km	0.350 km 0.470 km	A G	0.0% 0.0%	0.0%	3.8% 4.9%	0.3%	3.3% 10.7%	4.8% 14.2%	5.3% 16.6%	8.8% 28.1%	7.3% 20.6%	8.8% 25.8%	5.3% 11.5%	5.0% 10.0%	4.4% 7.8%	4.9% 8.8%	4.2% 6.0%	4.8% 8.3%	4.7% 6.9%	4.6% 6.2%	9.5% 10.8%	10.3% 11.7%	7.5% 4.3%	13.3% 5.2%	12.2% 6.0%	11.9% 5.0%
35A	0.350 km	0.470 km	A	0.0%	0.0%	3.8%	0.7 %	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	0.470 km	0.740 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	0.470 km	0.740 km	A	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A 35A	0.740 km 0.740 km	0.800 km 0.800 km	G A	0.0% 0.0%	0.0%	4.9% 3.8%	0.7%	10.7% 3.3%	14.2% 4.8%	16.6% 5.3%	28.1% 8.8%	20.6% 7.3%	25.8% 8.8%	11.5% 5.3%	10.0% 5.0%	7.8% 4.4%	8.8% 4.9%	6.0% 4.2%	8.3% 4.8%	6.9% 4.7%	6.2% 4.6%	10.8% 9.5%	11.7% 10.3%	4.3% 7.5%	5.2% 13.3%	6.0% 12.2%	5.0% 11.9%
35A	0.800 km	1.020 km	Ğ	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	0.800 km	1.020 km	A	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	1.020 km	1.220 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A 35A	1.020 km 1.220 km	1.220 km 1.270 km	A G	0.0% 0.0%	0.0%	3.8% 4.9%	0.3%	3.3% 10.7%	4.8% 14.2%	5.3% 16.6%	8.8% 28.1%	7.3% 20.6%	8.8% 25.8%	5.3% 11.5%	5.0% 10.0%	4.4% 7.8%	4.9% 8.8%	4.2% 6.0%	4.8% 8.3%	4.7% 6.9%	4.6% 6.2%	9.5% 10.8%	10.3% 11.7%	7.5% 4.3%	13.3% 5.2%	12.2% 6.0%	11.9% 5.0%
35A	1.220 km	1.270 km	A	0.0%	0.0%	3.8%	0.7%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	1.270 km	1.720 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	1.270 km	1.720 km	A	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A 35A	1.720 km 1.720 km	1.930 km 1.930 km	G A	0.0%	0.0%	4.9% 3.8%	0.7%	10.7%	14.2% 4.8%	16.6% 5.3%	28.1% 8.8%	20.6% 7.3%	25.8% 8.8%	11.5% 5.3%	10.0% 5.0%	7.8% 4.4%	8.8% 4.9%	6.0% 4.2%	8.3% 4.8%	6.9% 4.7%	6.2% 4.6%	10.8% 9.5%	11.7% 10.3%	4.3% 7.5%	5.2% 13.3%	6.0% 12.2%	5.0% 11.9%
35A	1.930 km	2.500 km	Ğ	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	1.930 km	2.500 km	Ā	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	2.500 km	2.550 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A 35A	2.500 km 2.550 km	2.550 km 2.900 km	A G	0.0%	0.0%	3.8% 4.9%	0.3%	3.3% 10.7%	4.8% 14.2%	5.3% 16.6%	8.8% 28.1%	7.3% 20.6%	8.8% 25.8%	5.3% 11.5%	5.0% 10.0%	4.4% 7.8%	4.9% 8.8%	4.2% 6.0%	4.8% 8.3%	4.7% 6.9%	4.6% 6.2%	9.5% 10.8%	10.3% 11.7%	7.5% 4.3%	13.3% 5.2%	12.2% 6.0%	11.9% 5.0%
35A	2.550 km	2.900 km	A	0.0%	0.0%	3.8%	0.7%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	2.900 km	3.130 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A	2.900 km	3.130 km	Α	0.0%	0.0%	3.8%	0.3%	3.3%	4.8%	5.3%	8.8%	7.3%	8.8%	5.3%	5.0%	4.4%	4.9%	4.2%	4.8%	4.7%	4.6%	9.5%	10.3%	7.5%	13.3%	12.2%	11.9%
35A	3.130 km	3.700 km	G	0.0%	0.0%	4.9%	0.7%	10.7%	14.2%	16.6%	28.1%	20.6%	25.8%	11.5%	10.0%	7.8%	8.8%	6.0%	8.3%	6.9%	6.2%	10.8%	11.7%	4.3%	5.2%	6.0%	5.0%
35A 35A	3.130 km 3.700 km	3.700 km 5.820 km	A G	0.0%	0.0%	3.8% 4.6%	0.3%	3.3% 9.9%	4.8% 13.2%	5.3% 15.4%	8.8% 26.1%	7.3% 19.2%	8.8% 24.0%	5.3% 10.7%	5.0% 9.3%	4.4% 7.2%	4.9% 8.2%	4.2% 5.6%	4.8% 7.7%	4.7% 6.4%	4.6% 5.7%	9.5% 10.0%	10.3% 10.9%	7.5% 4.0%	13.3% 4.9%	12.2% 5.6%	11.9% 4.7%
35A	3.700 km	5.820 km	A	0.0%	0.0%	5.3%	0.4%	4.7%	6.8%	7.5%	12.4%	10.4%	12.5%	7.5%	7.1%	6.3%	7.0%	5.9%	6.8%	6.7%	6.6%	13.5%	14.5%	10.7%	18.9%	17.4%	16.9%
35A	5.820 km	8.590 km	G	0.0%	0.0%	4.6%	0.6%	9.9%	13.2%	15.4%	26.1%	19.2%	24.0%	10.7%	9.3%	7.2%	8.2%	5.6%	7.7%	6.4%	5.7%	10.0%	10.9%	4.0%	4.9%	5.6%	4.7%
35A	5.820 km	8.590 km	A	0.0%	0.0%	5.3%	0.4%	4.7%	6.8%	7.5%	12.4%	10.4%	12.5%	7.5%	7.1%	6.3%	7.0%	5.9%	6.8%	6.7%	6.6%	13.5%	14.5%	10.7%	18.9%	17.4%	16.9%
35A 35A	8.590 km 8.590 km	9.190 km 9.190 km	G A	0.0% 0.0%	0.0%	4.6% 5.3%	0.6%	9.9% 4.7%	13.2% 6.8%	15.4% 7.5%	26.1% 12.4%	19.2% 10.4%	24.0% 12.5%	10.7% 7.5%	9.3% 7.1%	7.2% 6.3%	8.2% 7.0%	10.4% 13.7%	12.8% 14.9%	7.1% 7.7%	11.0% 14.8%	14.6% 20.5%	22.8% 33.4%	6.2% 13.6%	7.0% 21.7%	7.6% 20.1%	6.7% 19.6%
35A	9.190 km	9.430 km	G	0.0%	0.0%	4.6%	0.4%	9.9%	13.2%	15.4%	26.1%	19.2%	24.0%	10.7%	9.3%	7.2%	8.2%	10.4%	12.8%	7.1%	11.0%	14.6%	22.8%	6.2%	7.0%	7.6%	6.7%
35A	9.190 km	9.430 km	Ā	0.0%	0.0%	5.3%	0.4%	4.7%	6.8%	7.5%	12.4%	10.4%	12.5%	7.5%	7.1%	6.3%	7.0%	13.7%	14.9%	7.7%	14.8%	20.5%	33.4%	13.6%	21.7%	20.1%	19.6%
35A	9.430 km	11.000 km	G	0.0%	0.0%	4.6%	0.6%	9.9%	13.2%	15.4%	26.1%	19.2%	24.0%	10.7%	9.3%	7.2%	8.2%	10.4%	12.8%	7.1%	11.0%	14.6%	22.8%	6.2%	7.0%	7.6%	6.7%
35A	9.430 km	11.000 km	Α	0.0%	0.0%	5.3%	0.4%	4.7%	6.8%	7.5%	12.4%	10.4%	12.5%	7.5%	7.1%	6.3%	7.0%	13.7%	14.9%	7.7%	14.8%	20.5%	33.4%	13.6%	21.7%	20.1%	19.6%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

Page 16 of 21

ROAD	Start	End	Direction	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061
18C	116.065 km	118.625 km	G	15.5%	14.8%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	116.065 km	118.625 km	A	18.6% 15.5%	18.1%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	118.625 km 118.625 km	120.505 km 120.505 km	G A	18.6%	14.8% 18.1%	14.8% 17.9%	15.9% 18.5%	14.1% 16.9%	8.8% 10.8%	7.6% 9.3%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	2.6% 2.4%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%
18C	120.505 km	121.765 km	G	15.5%	14.8%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	120.505 km	121.765 km	A	18.6%	18.1%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	121.765 km 121.765 km	122.285 km 122.285 km	G A	15.5% 18.6%	14.8% 18.1%	14.8% 17.9%	15.9% 18.5%	14.1% 16.9%	8.8% 10.8%	7.6% 9.3%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	2.6% 2.4%	0.0%	0.0%	0.0%	0.0%
18C	122.285 km	125.535 km	Ĝ	15.5%	14.8%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	2.6%	0.0%	0.0%	0.0%	0.0%
18C	122.285 km	125.535 km	Α	18.6%	18.1%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	2.4%	0.0%	0.0%	0.0%	0.0%
18C 18C	125.535 km 125.535 km	125.795 km 125.795 km	G A	15.6% 18.6%	15.2% 18.3%	14.8% 17.9%	15.9% 18.5%	14.1% 16.9%	8.8% 10.8%	7.6% 9.3%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	3.8% 3.6%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
18C	125.795 km	125.795 km	Ğ	15.6%	15.2%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	3.8%	0.0%	0.0%	0.0%	0.0%
18C	125.795 km	125.895 km	Α	18.6%	18.3%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	3.6%	0.0%	0.0%	0.0%	0.0%
18C 18C	125.895 km 125.895 km	125.945 km 125.945 km	G A	15.6% 18.6%	15.2% 18.3%	14.8% 17.9%	15.9% 18.5%	14.1% 16.9%	8.8% 10.8%	7.6% 9.3%	6.9% 8.6%	6.6% 8.3%	6.4% 8.0%	6.3% 7.7%	6.0% 7.4%	5.2% 7.1%	7.6% 9.4%	6.8% 8.6%	6.0% 7.8%	5.3% 7.0%	4.6% 6.3%	3.8% 5.6%	3.2% 5.3%	3.8% 3.6%	0.0%	0.0%	0.0%	0.0%
18C	125.945 km	126.005 km	G	15.6%	15.2%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	3.8%	0.0%	0.0%	0.0%	0.0%
18C	125.945 km	126.005 km	Ā	18.6%	18.3%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	3.6%	0.0%	0.0%	0.0%	0.0%
18C	126.005 km	126.235 km	G	15.6%	15.2%	14.8%	15.9%	14.1%	8.8%	7.6%	6.9%	6.6%	6.4%	6.3%	6.0%	5.2%	7.6%	6.8%	6.0%	5.3%	4.6%	3.8%	3.2%	3.8%	0.0%	0.0%	0.0%	0.0%
18C 18C	126.005 km 126.235 km	126.235 km 126.475 km	A G	18.6% 15.6%	18.3% 15.2%	17.9% 14.8%	18.5% 15.9%	16.9% 14.1%	10.8% 8.8%	9.3% 7.6%	8.6% 6.9%	8.3% 6.6%	8.0% 6.4%	7.7% 6.3%	7.4% 6.0%	7.1% 5.2%	9.4% 7.6%	8.6% 6.8%	7.8% 6.0%	7.0% 5.3%	6.3% 4.6%	5.6% 3.8%	5.3% 3.2%	3.6% 3.8%	0.0%	0.0%	0.0%	0.0%
18C	126.235 km	126.475 km	Ä	18.6%	18.3%	17.9%	18.5%	16.9%	10.8%	9.3%	8.6%	8.3%	8.0%	7.7%	7.4%	7.1%	9.4%	8.6%	7.8%	7.0%	6.3%	5.6%	5.3%	3.6%	0.0%	0.0%	0.0%	0.0%
18C	126.475 km	126.745 km	G	26.3%	26.0%	25.0%	25.0%	24.4%	18.9%	17.6%	17.1%	16.6%	16.2%	15.8%	15.4%	15.0%	17.2%	16.2%	15.3%	14.5%	13.7%	12.9%	12.6%	22.2%	1.5%	0.0%	0.0%	0.0%
18C 35A	126.475 km 0.000 km	126.745 km 0.130 km	A	32.3% 4.4%	32.2%	29.9%	29.7%	30.2% 1.0%	25.6%	21.1%	20.1%	19.6%	19.1%	18.6%	18.2%	17.7%	20.0%	19.0%	18.0%	17.1%	16.2%	15.5% 0.0%	15.1%	23.8%	4.1%	0.0%	0.0%	0.0%
35A	0.000 km	0.130 km	G A	9.6%	2.7% 3.9%	1.6% 2.0%	2.0% 3.0%	1.1%	1.2% 1.8%	0.9% 1.1%	0.7% 0.8%	1.0% 1.6%	1.0% 1.8%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%
35A	0.130 km	0.240 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	0.130 km	0.240 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	0.240 km 0.240 km	0.350 km 0.350 km	G A	4.4% 9.6%	2.7% 3.9%	1.6% 2.0%	2.0% 3.0%	1.0% 1.1%	1.2% 1.8%	0.9% 1.1%	0.7% 0.8%	1.0% 1.6%	1.0% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%
35A	0.350 km	0.470 km	Ğ	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	0.350 km	0.470 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	0.470 km	0.740 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	0.470 km 0.740 km	0.740 km 0.800 km	A G	9.6%	3.9% 2.7%	2.0% 1.6%	3.0% 2.0%	1.1% 1.0%	1.8% 1.2%	1.1% 0.9%	0.8% 0.7%	1.6% 1.0%	1.8% 1.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
35A	0.740 km	0.800 km	Ā	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	0.800 km	1.020 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	0.800 km 1.020 km	1.020 km 1.220 km	A G	9.6%	3.9% 2.7%	2.0% 1.6%	3.0% 2.0%	1.1% 1.0%	1.8% 1.2%	1.1% 0.9%	0.8% 0.7%	1.6% 1.0%	1.8% 1.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	1.020 km	1.220 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.7%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	1.220 km	1.270 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	1.220 km	1.270 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	1.270 km 1.270 km	1.720 km 1.720 km	G A	4.4% 9.6%	2.7% 3.9%	1.6% 2.0%	2.0% 3.0%	1.0% 1.1%	1.2% 1.8%	0.9% 1.1%	0.7% 0.8%	1.0% 1.6%	1.0% 1.8%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	1.720 km	1.930 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	1.720 km	1.930 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	1.930 km 1.930 km	2.500 km 2.500 km	G A	4.4% 9.6%	2.7% 3.9%	1.6% 2.0%	2.0% 3.0%	1.0% 1.1%	1.2% 1.8%	0.9% 1.1%	0.7% 0.8%	1.0% 1.6%	1.0% 1.8%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%
35A	2.500 km	2.550 km	Ğ	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	2.500 km	2.550 km	A	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	2.550 km 2.550 km	2.900 km 2.900 km	G A	4.4% 9.6%	2.7% 3.9%	1.6% 2.0%	2.0% 3.0%	1.0% 1.1%	1.2% 1.8%	0.9% 1.1%	0.7% 0.8%	1.0% 1.6%	1.0% 1.8%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	2.900 km	3.130 km	G	4.4%	2.7%	1.6%	2.0%	1.1%	1.0%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	2.900 km	3.130 km	Ä	9.6%	3.9%	2.0%	3.0%	1.1%	1.8%	1.1%	0.8%	1.6%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	3.130 km	3.700 km	G	4.4%	2.7%	1.6%	2.0%	1.0%	1.2%	0.9%	0.7%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	3.130 km 3.700 km	3.700 km 5.820 km	A G	9.6%	3.9% 2.6%	2.0% 1.5%	3.0% 1.9%	1.1% 0.9%	1.8% 1.2%	1.1% 0.8%	0.8% 0.6%	1.6% 0.9%	1.8% 0.9%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%
35A 35A	3.700 km	5.820 km 5.820 km	A	13.6%	5.5%	2.8%	4.2%	1.6%	2.5%	1.6%	1.2%	2.2%	2.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	5.820 km	8.590 km	G	4.1%	2.6%	1.5%	1.9%	0.9%	1.2%	0.8%	0.6%	0.9%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	5.820 km	8.590 km	A	13.6%	5.5%	2.8%	4.2%	1.6%	2.5%	1.6%	1.2%	2.2%	2.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A 35A	8.590 km 8.590 km	9.190 km 9.190 km	G A	6.1% 16.3%	4.5% 8.1%	3.5% 5.4%	3.8% 6.7%	2.3% 3.0%	2.2% 3.5%	2.0% 3.2%	1.3% 1.7%	1.4% 2.6%	0.4% 0.9%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%
35A	9.190 km	9.430 km	G	6.1%	4.5%	3.5%	3.8%	2.3%	2.2%	2.0%	1.7%	1.4%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	9.190 km	9.430 km	Α	16.3%	8.1%	5.4%	6.7%	3.0%	3.5%	3.2%	1.7%	2.6%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	9.430 km	11.000 km	G	6.1%	4.5%	3.5%	3.8%	2.3%	2.2%	2.0%	1.3%	1.4%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
35A	9.430 km	11.000 km	Α	16.3%	8.1%	5.4%	6.7%	3.0%	3.5%	3.2%	1.7%	2.6%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Table F4	Maintenance Imp	acts (Increase	in ESA Loadings)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

Page 17 of 21

									BACK	GROUND	WITH DE	VELOPMENT		
								Adopted				WDDI		
ROAD	Start		Direction	Surveyed Roughness	Roughness Year	on Rate	Base Year Roughness	Terminal Roughnes	BKG Rehab Date	Breakpoint ESA	Break Year	WD Rehab Date	Bring Forward	Bring Forward?
				rtougimess	i cui	on rate	rtougimess	S	Date		rear	Date	1 Olwara	i oiwaia.
3251	0.000 km	0.120 km	G	197.50	2013	3.0	197.5	200.0	2013.83	37,727	2013	2013.83	0.00	No
3251		0.120 km	Α	197.50	2013	3.0	197.5	200.0	2013.83	45,691	2013	2013.83	0.00	No
3251		0.210 km	G	187.00	2013	3.0	187.0	190.0	2014.00	41,212		2014.00	0.00	No
3251		0.210 km	A	187.00	2013	3.0	187.0	190.0	2014.00	49,912	2014	2014.00	0.00	No
3251 3251		0.250 km 0.250 km	G A	243.00 243.00	2013 2013	3.0 3.0	243.0 243.0	250.0 250.0	2015.33 2015.33	70,107 84,908	2015 2015	2015.33 2015.33	0.00	No No
3251		0.280 km	G	243.00	2013	3.0	243.0	250.0	2015.33	70,107	2015	2015.33	0.00	No
3251		0.280 km	A	243.00	2013	3.0	243.0	250.0	2015.33	84,908	2015	2015.33	0.00	No
3251	0.280 km	0.630 km	G	158.51	2013	3.0	158.5	160.0	2013.50	30,657	2013	2013.50	0.00	No
3251		0.630 km	Α	158.51	2013	3.0	158.5	160.0	2013.50	37,129	2013	2013.50	0.00	No
3251		2.090 km	G	97.28	2013	3.0	97.3	120.0	2020.57	193,889	2020	2020.55	0.02	No
3251		2.090 km	A	97.28	2013	3.0 3.0	97.3	120.0	2020.57	234,822	2020 2024	2020.57	0.00	No
3251 3251		3.210 km 3.210 km	G A	86.40 86.40	2013 2013	3.0	86.4 86.4	120.0 120.0	2024.20 2024.20	289,318 350,396	2024	2024.17 2024.19	0.03 0.01	No No
3251		3.940 km	Ğ	72.47	2013	3.0	72.5	120.0	2028.84	423,287	2028	2028.79	0.05	No
3251		3.940 km	A	72.47	2013	3.0	72.5	120.0	2028.84	512,647	2028	2028.81	0.03	No
3251		4.430 km	G	75.69	2013	3.0	75.7	120.0	2027.77	391,097	2027	2027.72	0.05	No
3251		4.430 km	Α	75.69	2013	3.0	75.7	120.0	2027.77	473,662	2027	2027.74	0.03	No
3251		4.790 km	G	99.81	2013	3.0	99.8	120.0	2019.73	172,867	2019	2019.71	0.02	No
3251		4.790 km	A	99.81	2013	3.0	99.8	120.0	2019.73	209,362		2019.73	0.00	No
3251 3251		6.440 km 6.440 km	G A	75.96 75.96	2013 2013	3.0 3.0	76.0 76.0	120.0 120.0	2027.68 2027.68	388,450 470,456	2027 2027	2027.63 2027.65	0.05 0.03	No No
3251		6.690 km	Ğ	70.80	2013	3.0	70.8	120.0	2029.40	440,213	2027	2027.03	0.03	No
3251		6.690 km	A	70.80	2013	3.0	70.8	120.0	2029.40	533,147	2029	2029.12	0.28	No
3251		7.370 km	G	89.91	2013	3.0	89.9	120.0	2023.03	257,606	2023	2023.01	0.02	No
3251		7.370 km	Α	89.91	2013	3.0	89.9	120.0	2023.03	311,989	2023	2023.03	0.00	No
3251		9.340 km	G	77.53	2013	3.0	77.5	120.0	2027.16	373,051	2027	2027.11	0.05	No
3251		9.340 km	A	77.53	2013	3.0	77.5	120.0	2027.16	451,806	2027	2027.13	0.03	No
3251 3251		9.630 km 9.630 km	G A	65.31 65.31	2013 2013	3.0 3.0	65.3 65.3	120.0 120.0	2031.23 2031.23	497,198 602,161	2029 2029	2029.69 2029.72	1.54 1.51	Yes Yes
3251		9.800 km	G	100.59	2013	3.0	100.6	120.0	2011.23	166,459	2029	2029.72	0.02	No
3251		9.800 km	Ä	100.59	2013	3.0	100.6	120.0	2019.47	201,600	2019	2019.47	0.00	No
3251		9.850 km	G	141.00	2013	3.0	141.0	150.0	2016.00	84,859	2015	2015.99	0.01	No
3251		9.850 km	Α	141.00	2013	3.0	141.0	150.0	2016.00	102,774	2015	2016.00	0.00	No
3251		13.580 km	G	73.63	2013	3.0	73.6	120.0	2028.46	411,653	2023	2023.43	5.03	Yes
3251		13.580 km	A	73.63	2013	3.0	73.6	120.0	2028.46	498,558	2023	2023.97	4.49	Yes
3251 3251		13.750 km 13.750 km	G A	84.24 84.24	2013 2013	3.0 3.0	84.2 84.2	120.0 120.0	2024.92 2024.92	309,256 374,544	2021 2021	2021.52 2021.96	3.40 2.96	Yes Yes
3251		14.920 km	G	86.19	2013	3.0	86.2	120.0	2024.92	291,285	2021	2021.96	3.11	Yes
3251		14.920 km	A	86.19	2013	3.0	86.2	120.0	2024.27	352,778	2021	2021.57	2.70	Yes
3251		16.410 km	G	95.35	2013	3.0	95.3	120.0	2021.22	210,232	2019	2019.51	1.71	Yes
3251		16.410 km	Α	95.35	2013	3.0	95.3	120.0	2021.22	254,614	2019	2019.77	1.45	Yes
3251		16.680 km	G	76.78	2013	3.0	76.8	120.0	2027.41	380,461	2022	2022.92	4.49	Yes
3251		16.680 km	A	76.78	2013	3.0	76.8	120.0	2027.41	460,781	2023	2023.41	4.00	Yes
3251 3251		19.900 km 19.900 km	G	81.48 81.48	2013 2013	3.0 3.0	81.5 81.5	120.0 120.0	2025.84 2025.84	335,142 405,894	2022 2022	2022.04 2022.52	3.80 3.32	Yes Yes
3251		21.460 km	A G	77.85	2013	3.0	77.8	120.0	2025.64	369,978	2022	2022.52	4.33	Yes
3251		21.460 km	A	77.85	2013	3.0	77.8	120.0	2027.05	448,085	2022	2023.06	3.99	Yes
3251		21.970 km	G	77.10	2013	3.0	77.1	120.0	2027.30	377,319	2022	2022.86	4.44	Yes
3251	21.460 km	21.970 km	Α	77.10	2013	3.0	77.1	120.0	2027.30	456,975	2023	2023.10	4.20	Yes
3251		23.140 km	G	78.36	2013	3.0	78.4	120.0	2026.88	365,019	2022	2022.62	4.26	Yes
3251		23.140 km	Α	78.36	2013	3.0	78.4	120.0	2026.88	442,079	2023	2023.04	3.84	Yes
3251		23.590 km	G	103.22	2013	3.0	103.2	120.0	2018.59	145,139	2018	2018.26	0.33	No
3251 3251		23.590 km 25.060 km	A G	103.22 68.50	2013 2013	3.0 3.0	103.2 68.5	120.0 120.0	2018.59 2030.17	175,780 463,852	2018 2023	2018.31 2023.38	0.28 6.79	No
3251		25.060 km	A	68.50	2013	3.0	68.5	120.0	2030.17	561,777	2023	2023.55	6.62	Yes Yes
3251		25.730 km	G	72.72	2013	3.0	72.7	120.0	2028.76	420,776	2023	2023.33	8.52	Yes
3251		25.730 km	Ā	72.72	2013	3.0	72.7	120.0	2028.76	509,607	2020	2020.43	8.33	Yes
3251	25.730 km	27.900 km	G	79.86	2013	3.0	79.9	120.0	2026.38	350,579	2020	2020.09	6.29	Yes

Table F5	Rehabilitation I	mpacts (Bring	Forward Period)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

	_	_	_	_	_	_	_	Adopted	_	_	-	_	-	
ROAD	Start	End	Direction	Surveyed		Deteriorati	Base Year	Terminal	BKG Rehab	Breakpoint ESA	Break	WD Rehab	Bring	Bring
				Roughness	Year	on Rate	Roughness	Roughnes s	Date		Year	Date	Forward	Forward?
3251	25.730 km	27.900 km	A	79.86	2013	3.0	79.9	120.0	2026.38	424,590	2020	2020.16	6.22	Yes
3251	27.900 km	28.020 km	G	75.17	2013	3.0	75.2	120.0	2027.94	396,270	2020	2020.45	7.49	Yes
3251	27.900 km	28.020 km	Α	75.17	2013	3.0	75.2	120.0	2027.94	479,927	2020	2020.53	7.41	Yes
3251	28.020 km	29.940 km	G	78.78	2013	3.0	78.8	120.0	2026.74	360,961	2020	2020.14	6.60	Yes
3251	28.020 km	29.940 km	Α	78.78	2013	3.0	78.8	120.0	2026.74	437,164	2020	2020.18	6.56	Yes
3251	29.940 km	31.190 km	G	74.66	2013	3.0	74.7	120.0	2028.11	401,351	2020	2020.49	7.62	Yes
3251	29.940 km	31.190 km	A	74.66	2013	3.0	74.7	120.0	2028.11	486,080	2020	2020.58	7.53	Yes
3251	31.190 km	37.830 km	G	66.02	2013	3.0	66.0	120.0	2030.99	489,682	2021	2021.25	9.74	Yes
3251	31.190 km	37.830 km	A	66.02	2013	3.0	66.0	120.0	2030.99	593,059	2021	2021.44	9.55	Yes
3251 3251	37.830 km 37.830 km	38.895 km 38.895 km	G A	81.96 81.96	2013 2013	3.0 3.0	82.0 82.0	120.0 120.0	2025.68 2025.68	330,632 400,432	2016 2016	2016.09 2016.95	9.59 8.73	Yes Yes
3251	38.950 km	44.210 km	G	74.97	2013	3.0	75.0	120.0	2023.00	398,172	2016	2016.55	11.44	Yes
3251	38.950 km	44.210 km	A	74.97	2013	3.0	75.0 75.0	120.0	2028.01	482,231	2017	2017.78	10.23	Yes
3251	44.210 km	44.300 km	G	66.00	2013	3.0	66.0	120.0	2031.00	489,870	2018	2018.98	12.02	Yes
3251	44.210 km	44.300 km	Ā	66.00	2013	3.0	66.0	120.0	2031.00	593,287	2019	2019.94	11.06	Yes
3251	44.300 km	44.360 km	G	93.00	2013	3.0	93.0	120.0	2022.00	230,420	2017	2017.17	4.83	Yes
3251	44.300 km	44.360 km	Α	93.00	2013	3.0	93.0	120.0	2022.00	279,064	2017	2017.93	4.07	Yes
3251	44.360 km	44.520 km	G	115.38	2013	3.0	115.4	120.0	2014.54	52,868	2014	2014.23	0.31	No
3251	44.360 km	44.520 km	Α	115.38	2013	3.0	115.4	120.0	2014.54	64,029	2014	2014.18	0.36	No
3251	44.520 km	44.630 km	G	123.00	2013	3.0	123.0	130.0	2015.33	70,107	2014	2014.58	0.75	No
3251	44.520 km	44.630 km	A	123.00	2013	3.0	123.0	130.0	2015.33	84,908	2014	2014.46	0.87	No
3251	44.630 km	44.860 km	G	100.91	2013	3.0	100.9	120.0	2019.36	163,799	2015	2015.49	3.87	Yes
3251	44.630 km	44.860 km	A G	100.91	2013 2013	3.0 3.0	100.9 105.4	120.0	2019.36 2017.87	198,379	2015 2015	2015.46	3.90	Yes
3251 3251	44.860 km 44.860 km	45.090 km 45.090 km	A	105.39 105.39	2013	3.0	105.4	120.0 120.0	2017.87	127,898 154,899	2015	2015.25 2015.19	2.62 2.68	Yes Yes
3251	45.090 km	45.320 km	G	105.39	2013	3.0	103.4	120.0	2017.07	157,035	2015	2015.19	3.64	Yes
3251	45.090 km	45.320 km	A	101.74	2013	3.0	101.7	120.0	2019.09	190,187	2015	2015.41	3.68	Yes
3251	45.320 km	45.610 km	G	92.03	2013	3.0	92.0	120.0	2022.32	238,914	2016	2016.60	5.72	Yes
3251	45.320 km	45.610 km	Α	92.03	2013	3.0	92.0	120.0	2022.32	289,351	2016	2016.80	5.52	Yes
18C	80.175 km	80.365 km	G	95.74	2013	3.0	95.7	120.0	2021.09	3,680,882	2019	2019.91	1.18	Yes
18C	80.175 km	80.365 km	Α	95.74	2013	3.0	95.7	120.0	2021.09	4,378,590	2020	2020.07	1.02	Yes
18C	80.365 km	80.485 km	G	141.42	2013	3.0	141.4	150.0	2015.86	1,455,034	2015	2015.73	0.13	No
18C	80.365 km	80.485 km	A	141.42	2013	3.0	141.4	150.0	2015.86	1,730,835	2015	2015.81	0.05	No
18C	80.485 km	80.615 km	G	158.35	2013	3.0	158.3	160.0	2013.55	566,258	2013	2013.55	0.00	No
18C 18C	80.485 km 80.615 km	80.615 km 80.645 km	A G	158.35 163.00	2013 2013	3.0 3.0	158.3 163.0	160.0 170.0	2013.55 2015.33	673,592 1,247,258	2013 2015	2013.55 2015.27	0.00 0.06	No No
18C	80.615 km	80.645 km	A	163.00	2013	3.0	163.0	170.0	2015.33	1,483,675	2015	2015.27	0.00	No
18C	80.645 km	80.705 km	Ğ	163.33	2013	3.0	163.3	170.0	2015.22	1,203,516	2015	2015.17	0.05	No
18C	80.645 km	80.705 km	A	163.33	2013	3.0	163.3	170.0	2015.22	1,431,641	2015	2015.21	0.01	No
18C	80.705 km	80.875 km	G	134.79	2013	3.0	134.8	140.0	2014.74	1,014,690	2014	2014.72	0.02	No
18C	80.705 km	80.875 km	Α	134.79	2013	3.0	134.8	140.0	2014.74	1,207,023	2014	2014.73	0.01	No
18C	80.875 km	81.045 km	G	75.62	2013	3.0	75.6	120.0	2027.79	6,971,212	2026	2026.10	1.69	Yes
18C	80.875 km	81.045 km	A	75.62	2013	3.0	75.6	120.0	2027.79	8,292,600	2026	2026.30	1.49	Yes
18C	81.045 km	81.255 km	G	75.45	2013	3.0	75.5	120.0	2027.85	7,000,062	2026	2026.14	1.71	Yes
18C	81.045 km	81.255 km	A	75.45	2013	3.0	75.5	120.0	2027.85	8,326,919	2026	2026.35	1.50	Yes
18C 18C	81.255 km 81.255 km	81.505 km 81.505 km	G A	105.60 105.60	2013 2013	3.0 3.0	105.6 105.6	120.0 120.0	2017.80 2017.80	2,876,945 2,722,376	2017 2017	2017.44 2017.50	0.36 0.30	No No
18C	81.505 km	81.755 km	G	64.96	2013	3.0	65.0	120.0	2017.80	11,412,620	2017	2017.50	1.69	Yes
18C	81.505 km	81.755 km	A	64.96	2013	3.0	65.0	120.0	2031.35	10,799,457	2029	2029.44	1.03	Yes
18C	81.755 km	82.425 km	G	115.65	2013	3.0	115.6	120.0	2014.45	1,159,688	2014	2014.44	0.01	No
18C	81.755 km	82.425 km	Ā	115.65	2013	3.0	115.6	120.0	2014.45	1,097,382	2014	2014.45	0.00	No
18C	82.425 km	82.775 km	G	102.71	2013	3.0	102.7	120.0	2018.76	3,399,164	2018	2018.29	0.47	No
18C	82.425 km	82.775 km	Α	102.71	2013	3.0	102.7	120.0	2018.76	3,216,538	2018	2018.32	0.44	No
18C	82.775 km	83.155 km	G	106.92	2013	3.0	106.9	120.0	2017.36	2,642,717	2017	2017.06	0.30	No
18C	82.775 km	83.155 km	Α	106.92	2013	3.0	106.9	120.0	2017.36	2,500,733	2017	2017.12	0.24	No
18C	83.155 km	87.525 km	G	91.09	2013	3.0	91.1	120.0	2022.64	5,303,254	2021	2021.72	0.92	No
18C	83.155 km	87.525 km	A	91.09	2013	3.0	91.1	120.0	2022.64	5,244,645	2021	2021.72	0.92	No
18C 18C	87.525 km 87.525 km	89.805 km 89.805 km	G A	89.92 89.92	2013 2013	3.0 3.0	89.9 89.9	120.0 120.0	2023.03 2023.03	5,523,370 5,462,328	2022 2022	2022.07 2022.06	0.96 0.97	No No
18C	89.805 km	90.315 km	G	84.12	2013	3.0	84.1	120.0	2023.03	6,656,201	2022	2022.06	1.19	Yes
100	OU.OUO KIII	JU.J IJ KIII	G	07.12	2010	5.0	U-7. I	120.0	2024.30	0,000,201	2020	2020.11	1.19	100

Table F5	Rehabilitation I	mpacts (Bring	Forward Period)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

								Adopted						
ROAD	Start	End	Direction	Surveyed		Deteriorati		Terminal	BKG Rehab	Breakpoint ESA	Break	WD Rehab	Bring	Bring
NOAD			- Direction	Roughness	Year	on Rate	Roughness	Roughnes	Date		Year	Date	Forward	Forward?
18C	89.805 km	90.315 km	A	84.12	2013	3.0	84.1	120.0	2024.96	6,582,639	2023	2023.72	1.24	Yes
18C	90.315 km	90.335 km	Ğ	88.00	2013	3.0	88.0	120.0	2023.67	5,894,207	2022	2022.63	1.04	Yes
18C	90.315 km	90.335 km	Ā	88.00	2013	3.0	88.0	120.0	2023.67	5,829,066	2022	2022.60	1.07	Yes
18C	90.335 km	90.955 km	G	83.68	2013	3.0	83.7	120.0	2025.11	6,744,504	2023	2023.90	1.21	Yes
18C	90.335 km	90.955 km	Α	83.68	2013	3.0	83.7	120.0	2025.11	6,669,966	2023	2023.85	1.26	Yes
18C	90.955 km	91.665 km	G	79.66	2013	3.0	79.7	120.0	2026.45	7,560,434	2025	2025.11	1.34	Yes
18C	90.955 km	91.665 km	Α	79.66	2013	3.0	79.7	120.0	2026.45	7,476,879	2025	2025.03	1.42	Yes
18C	91.665 km	95.015 km	G	66.59	2013	3.0	66.6	120.0	2030.80	10,375,370	2029	2029.12	1.68	Yes
18C	91.665 km	95.015 km	A	66.59	2013	3.0	66.6	120.0	2030.80	10,260,705	2028	2028.96	1.84	Yes
18C 18C	95.015 km	96.275 km	G A	66.30 66.30	2013 2013	3.0 3.0	66.3 66.3	120.0	2030.90 2030.90	10,440,289	2029 2029	2029.21	1.69	Yes
18C	95.015 km 96.275 km	96.275 km 97.355 km	G	60.66	2013	3.0	60.7	120.0 120.0	2030.90	10,324,907 11,734,443	2029	2029.05 2030.96	1.85 1.82	Yes Yes
18C	96.275 km	97.355 km	A	60.66	2013	3.0	60.7	120.0	2032.78	11,604,758	2030	2030.96	2.03	Yes
18C	97.355 km	97.425 km	G	98.43	2013	3.0	98.4	120.0	2020.19	3,952,003	2019	2019.53	0.66	No
18C	97.355 km	97.425 km	Ā	98.43	2013	3.0	98.4	120.0	2020.19	3,908,327	2019	2019.55	0.64	No
18C	97.425 km	97.575 km	G	115.50	2013	3.0	115.5	120.0	2014.50	1,114,689	2014	2014.49	0.01	No
18C	97.425 km	97.575 km	Α	115.50	2013	3.0	115.5	120.0	2014.50	1,102,370	2014	2014.50	0.00	No
18C	97.575 km	98.965 km	G	66.55	2013	3.0	66.6	120.0	2030.82	10,382,993	2029	2029.13	1.69	Yes
18C	97.575 km	98.965 km	Α	66.55	2013	3.0	66.6	120.0	2030.82	10,268,244	2028	2028.97	1.85	Yes
18C	98.965 km	104.235 km	G	73.06	2013	3.0	73.1	120.0	2028.65	8,950,912	2027	2027.13	1.52	Yes
18C	98.965 km	104.235 km	A	73.06	2013	3.0	73.1	120.0	2028.65	8,851,990	2027	2027.01	1.64	Yes
18C	104.235 km	104.435 km	G	61.37	2013	3.0	61.4	120.0	2032.54	11,567,799	2030	2030.74	1.80	Yes
18C 18C	104.235 km 104.435 km	104.435 km 106.355 km	A G	61.37 67.05	2013 2013	3.0 3.0	61.4 67.1	120.0 120.0	2032.54 2030.65	11,439,955 10,271,070	2030 2028	2030.52 2028.98	2.02 1.67	Yes Yes
18C	104.435 km	106.355 km	A	67.05	2013	3.0	67.1	120.0	2030.65	10,271,070	2028	2028.82	1.83	Yes
18C	104.455 km	108.855 km	G	95.02	2013	3.0	95.0	120.0	2021.33	4,651,442	2020	2020.57	0.76	No
18C	106.355 km	108.855 km	A	95.02	2013	3.0	95.0	120.0	2021.33	4,563,470	2020	2020.56	0.77	No
18C	108.855 km	109.405 km	G	99.01	2013	3.0	99.0	120.0	2020.00	3,916,993	2019	2019.36	0.64	No
18C	108.855 km	109.405 km	Α	99.01	2013	3.0	99.0	120.0	2020.00	3,842,912	2019	2019.38	0.62	No
18C	109.405 km	109.445 km	G	105.00	2013	3.0	105.0	120.0	2018.00	2,859,173	2017	2017.61	0.39	No
18C	109.405 km	109.445 km	Α	105.00	2013	3.0	105.0	120.0	2018.00	2,805,098	2017	2017.67	0.33	No
18C	109.445 km	109.815 km	G	72.55	2013	3.0	72.6	120.0	2028.82	9,223,234	2027	2027.31	1.51	Yes
18C	109.445 km	109.815 km	A	72.55	2013	3.0	72.6	120.0	2028.82	9,048,798	2027	2027.18	1.64	Yes
18C	109.815 km	110.045 km	G	57.85	2013	3.0	57.8	120.0	2033.72	12,619,968	2031	2031.77	1.95	Yes
18C 18C	109.815 km 110.045 km	110.045 km 110.105 km	A G	57.85 58.08	2013 2013	3.0 3.0	57.8 58.1	120.0 120.0	2033.72 2033.64	12,381,290 12,563,246	2031 2031	2031.50 2031.70	2.22 1.94	Yes Yes
18C	110.045 km	110.105 km	A	58.08	2013	3.0	58.1	120.0	2033.64	12,325,641	2031	2031.70	2.21	Yes
18C	110.105 km	111.465 km	Ĝ	79.85	2013	3.0	79.8	120.0	2026.38	7,657,566	2025	2025.08	1.30	Yes
18C	110.105 km	111.465 km	A	79.85	2013	3.0	79.8	120.0	2026.38	7,512,741	2024	2024.99	1.39	Yes
18C	111.465 km	112.375 km	G	86.15	2012	3.0	89.1	120.0	2023.28	5,774,893	2022	2022.31	0.97	No
18C	111.465 km	112.375 km	A	86.15	2012	3.0	89.1	120.0	2023.28	5,665,674	2022	2022.29	0.99	No
18C	112.375 km	112.735 km	G	66.46	2012	3.0	69.5	120.0	2029.85	9,911,492	2028	2028.27	1.58	Yes
18C	112.375 km	112.735 km	Α	66.46	2012	3.0	69.5	120.0	2029.85	9,724,039	2028	2028.12	1.73	Yes
18C	112.735 km	113.585 km	G	51.64	2012	3.0	54.6	120.0	2034.79	13,402,746	2032	2032.72	2.07	Yes
18C	112.735 km	113.585 km	A	51.64	2012	3.0	54.6	120.0	2034.79	13,149,264	2032	2032.40	2.39	Yes
18C	113.585 km	115.465 km	G	54.83	2013	3.0	54.8	120.0	2034.72	13,357,136	2032	2032.66	2.06	Yes
18C	113.585 km	115.465 km	A	54.83	2013	3.0	54.8	120.0	2034.72	13,104,516	2032	2032.35	2.37	Yes
18C	115.465 km	116.065 km	G	64.01	2013	3.0	64.0	120.0	2031.66	11,158,446	2029	2029.91	1.75	Yes
18C 18C	115.465 km 116.065 km	116.065 km 118.625 km	A G	64.01 48.88	2013 2013	3.0 3.0	64.0 48.9	120.0 120.0	2031.66 2036.71	10,947,410 14,848,733	2029 2034	2029.70 2034.42	1.96 2.29	Yes Yes
18C	116.065 km	118.625 km	A	48.88	2013	3.0	48.9 48.9	120.0	2036.71	14,567,903	2034	2034.42	2.29	Yes
18C	118.625 km	120.505 km	Ğ	51.15	2013	3.0	51.2	120.0	2035.95	14,270,644	2033	2033.74	2.21	Yes
18C	118.625 km	120.505 km	A	51.15	2013	3.0	51.2	120.0	2035.95	14,000,747	2033	2033.36	2.59	Yes
18C	120.505 km	121.765 km	G	56.36	2013	3.0	56.4	120.0	2034.21	12,980,876	2032	2032.18	2.03	Yes
18C	120.505 km	121.765 km	A	56.36	2013	3.0	56.4	120.0	2034.21	12,735,372	2031	2031.86	2.35	Yes
18C	121.765 km	122.285 km	G	69.04	2013	3.0	69.0	120.0	2029.99	10,005,173	2028	2028.37	1.62	Yes
18C	121.765 km	122.285 km	Α	69.04	2013	3.0	69.0	120.0	2029.99	9,815,948	2028	2028.18	1.81	Yes
18C	122.285 km	125.535 km	G	61.05	2013	3.0	61.1	120.0	2032.65	11,852,469	2030	2030.77	1.88	Yes
18C	122.285 km	125.535 km	A	61.05	2013	3.0	61.1	120.0	2032.65	11,628,306	2030	2030.50	2.15	Yes
18C	125.535 km	125.795 km	G	81.79	2013	3.0	81.8	120.0	2025.74	7,254,178	2024	2024.46	1.28	Yes

Table F5	Rehabilitation I	mpacts (Bring	Forward Period)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

DOAR	Stort	Fod	Direction	Surveyed	Roughness	Deteriorati	Base Year	Adopted Terminal	BKG Rehab	Dranks sint FC+	Break	WD Rehab	Bring	Bring
ROAD	Start		Direction	Roughness	Year	on Rate	Roughness	Roughnes	Date	Breakpoint ESA	Year	Date	Forward	Forward?
18C	125.535 km	125.795 km	Α	81.79	2013	3.0	81.8	120.0	2025.74	7,116,982	2024	2024.36	1.38	Yes
18C	125.795 km	125.895 km	G	65.30	2013	3.0	65.3	120.0	2031.23	10,858,799	2029	2029.47	1.76	Yes
18C	125.795 km	125.895 km	A	65.30	2013	3.0	65.3	120.0	2031.23	10,653,430	2029	2029.23	2.00	Yes
18C	125.895 km	125.945 km	G	43.30	2013	3.0	43.3	120.0	2038.57	16,294,479	2036	2036.05	2.52	Yes
18C 18C	125.895 km 125.945 km	125.945 km 126.005 km	A G	43.30 41.08	2013 2013	3.0 3.0	43.3 41.1	120.0 120.0	2038.57 2039.31	15,986,306 16,881,558	2035 2036	2035.60 2036.72	2.97 2.59	Yes Yes
18C	125.945 km	126.005 km	A	41.08	2013	3.0	41.1	120.0	2039.31	16,562,281	2036	2036.72	3.05	Yes
18C	126.005 km	126.235 km	Ğ	44.37	2013	3.0	44.4	120.0	2038.21	16,013,168	2035	2035.73	2.48	Yes
18C	126.005 km	126.235 km	Ā	44.37	2013	3.0	44.4	120.0	2038.21	15,710,315	2035	2035.28	2.93	Yes
18C	126.235 km	126.475 km	G	49.21	2013	3.0	49.2	120.0	2036.60	14,764,514	2034	2034.27	2.33	Yes
18C	126.235 km	126.475 km	Α	49.21	2013	3.0	49.2	120.0	2036.60	14,485,276	2033	2033.86	2.74	Yes
18C	126.475 km	126.745 km	G	72.04	2013	3.0	72.0	120.0	2028.99	9,336,299	2025	2025.90	3.09	Yes
18C	126.475 km	126.745 km	Α	72.04	2013	3.0	72.0	120.0	2028.99	9,159,724	2025	2025.76	3.23	Yes
35A	0.000 km	0.130 km	G	124.69	2013	3.0	124.7	130.0	2014.77	564,920	2014	2014.73	0.04	No
35A	0.000 km	0.130 km	A	124.69	2013	3.0	124.7	130.0	2014.77	649,963	2014	2014.74	0.03	No
35A	0.130 km	0.240 km	G	77.73	2013 2013	3.0 3.0	77.7	120.0	2027.09 2027.09	3,629,657	2025 2026	2025.72 2026.53	1.37 0.56	Yes
35A 35A	0.130 km 0.240 km	0.240 km 0.350 km	A G	77.73 83.09	2013	3.0	77.7 83.1	120.0 120.0	2027.09	4,176,065 3,129,218	2026	2026.53	1.27	No Yes
35A	0.240 km	0.350 km	A	83.09	2013	3.0	83.1	120.0	2025.30	3,600,290	2024	2024.80	0.50	No
35A	0.350 km	0.470 km	Ğ	92.67	2013	3.0	92.7	120.0	2022.11	2,282,098	2021	2021.18	0.93	No
35A	0.350 km	0.470 km	Ā	92.67	2013	3.0	92.7	120.0	2022.11	2,625,644	2021	2021.74	0.37	No
35A	0.470 km	0.740 km	G	71.11	2013	3.0	71.1	120.0	2029.30	4,274,034	2027	2027.84	1.46	Yes
35A	0.470 km	0.740 km	Α	71.11	2013	3.0	71.1	120.0	2029.30	4,917,446	2028	2028.66	0.64	No
35A	0.740 km	0.800 km	G	113.00	2013	3.0	113.0	120.0	2015.33	685,622	2015	2015.28	0.05	No
35A	0.740 km	0.800 km	Α	113.00	2013	3.0	113.0	120.0	2015.33	788,835	2015	2015.30	0.03	No
35A	0.800 km	1.020 km	G	58.64	2013	3.0	58.6	120.0	2033.45	5,567,220	2031	2031.78	1.67	Yes
35A	0.800 km	1.020 km	A	58.64	2013	3.0	58.6	120.0	2033.45	6,405,307	2032	2032.58	0.87	No
35A	1.020 km	1.220 km	G	71.10	2013	3.0	71.1	120.0	2029.30	4,275,144	2027	2027.85	1.45	Yes
35A 35A	1.020 km 1.220 km	1.220 km 1.270 km	A G	71.10 86.00	2013 2013	3.0 3.0	71.1 86.0	120.0 120.0	2029.30 2024.33	4,918,723 2,865,582	2028 2023	2028.67 2023.12	0.63 1.21	No
35A 35A	1.220 km	1.270 km	A	86.00	2013	3.0	86.0	120.0	2024.33	3,296,966	2023	2023.12	0.46	Yes No
35A	1.270 km	1.720 km	Ĝ	57.96	2013	3.0	58.0	120.0	2024.55	5,640,660	2023	2023.07	1.69	Yes
35A	1.270 km	1.720 km	Ä	57.96	2013	3.0	58.0	120.0	2033.68	6,489,803	2032	2032.79	0.89	No
35A	1.720 km	1.930 km	G	75.38	2013	3.0	75.4	120.0	2027.87	3,854,812	2026	2026.48	1.39	Yes
35A	1.720 km	1.930 km	Α	75.38	2013	3.0	75.4	120.0	2027.87	4,435,114	2027	2027.29	0.58	No
35A	1.930 km	2.500 km	G	63.63	2013	3.0	63.6	120.0	2031.79	5,036,835	2030	2030.24	1.55	Yes
35A	1.930 km	2.500 km	Α	63.63	2013	3.0	63.6	120.0	2031.79	5,795,078	2031	2031.03	0.76	No
35A	2.500 km	2.550 km	G	82.00	2013	3.0	82.0	120.0	2025.67	3,229,571	2024	2024.37	1.30	Yes
35A	2.500 km	2.550 km	A	82.00	2013	3.0	82.0	120.0	2025.67	3,715,749	2025	2025.15	0.52	No
35A	2.550 km	2.900 km	G	111.14	2013	3.0	111.1	120.0	2015.95	819,589	2015	2015.90	0.05	No
35A	2.550 km	2.900 km	A G	111.14 95.09	2013 2013	3.0 3.0	111.1 95.1	120.0	2015.95 2021.30	942,969 2,078,015	2015 2020	2015.91 2020.50	0.04 0.80	No
35A 35A	2.900 km 2.900 km	3.130 km 3.130 km	A	95.09 95.09	2013	3.0	95.1 95.1	120.0 120.0	2021.30	2,078,015	2020	2020.50	0.80	No No
35A	3.130 km	3.700 km	Ĝ	100.93	2013	3.0	100.9	120.0	2019.36	1,600,551	2018	2018.92	0.44	No
35A	3.130 km	3.700 km	A	100.93	2013	3.0	100.9	120.0	2019.36	1,841,497	2019	2019.18	0.18	No
35A	3.700 km	5.820 km	G	63.42	2013	3.0	63.4	120.0	2031.86	5,439,568	2030	2030.40	1.46	Yes
35A	3.700 km	5.820 km	Α	63.42	2013	3.0	63.4	120.0	2031.86	4,105,298	2030	2030.81	1.05	Yes
35A	5.820 km	8.590 km	G	85.77	2013	3.0	85.8	120.0	2024.41	3,103,908	2023	2023.27	1.14	Yes
35A	5.820 km	8.590 km	Α	85.77	2013	3.0	85.8	120.0	2024.41	2,342,552	2023	2023.75	0.66	No
35A	8.590 km	9.190 km	G	105.13	2013	3.0	105.1	120.0	2017.96	1,366,176	2017	2017.72	0.24	No
35A	8.590 km	9.190 km	A	105.13	2013	3.0	105.1	120.0	2017.96	1,031,067	2017	2017.80	0.16	No
35A	9.190 km	9.430 km	G	94.58	2013	3.0	94.6	120.0	2021.47	2,280,142	2020	2020.69	0.78	No
35A	9.190 km	9.430 km	A	94.58	2013	3.0	94.6	120.0	2021.47	1,720,847	2021 2014	2021.03	0.44	No
35A 35A	9.430 km	11.000 km	G ^	115.97 115.97	2013	3.0 3.0	116.0 116.0	120.0	2014.34	510,768 385,482	2014	2014.33 2014.32	0.01	No No
ACC	9.430 km	11.000 km	Α	115.97	2013	3.0	110.0	120.0	2014.34	385,482	2014	2014.32	0.02	No

Table F5	Rehabilitation I	mpacts (Bring	Forward Period)
Project:	Surat Gas Project	Project No:	CEB06413
Prepared by:	Jessica Peters	Reviewed by:	Jeffrey Baczynksi

